Background Information

This section provides important information about the Coinext exchange software..

Standard Response Object and Common Error Codes

A response to an API call usually consists of a specific response object (as documented in this
guide), but both successful and unsuccessful responses may consist of a generic response object that
verifies that the call was received; the response to an unsuccessful call provides an error code. A
generic response looks like:

{

“result”: true,
“errormsg”: “”
“errorcode”: 0,
“detail”: “7,
}
Where:
String Value
result Boolean. If the call has been successfully received by the Order Management
System, result is true; otherwise, it is false.

Background Information

Table continued from page 2

errormsg string. A successful receipt of the call returns null; the errormsg parameter for an
unsuccessful call returns one of the following messages:

Not Authorized (errorcode 20)

Invalid Request (errorcode 100)

Operation Failed (errorcode 101)

Server Error (errorcode 102)

Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the call returns 0. An unsuccessful receipt of the
call returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. The content of this parameter is
usually null.

Products and Instruments

In Coinext software, a product is an asset that is tradable or paid out. A product might be a
currency or a commodity or something else. For example, a product might be a US Dollar or a New
Zealand Dollar or a BitCoin or an ounce of gold. Fees are denominated in products. (Products may
also be referred to as assets in the API calls.)

An instrument is a pair of exchanged products (or fractions of them). For example, US Dollars
and an ounce of gold, or an ounce of gold and BitCoins. In conventional parlance, a stock or a
bond is called an instrument, but implicit in that is the potential exchange of one product for
another (stock for dollars). Coinext software thinks of that exchange as explicit.

Background Information

Quotes and Orders

The Coinext API includes calls related to both quotes and orders.
> A quote expresses a willingness to buy or sell at a given price.

»» An order is a directive to buy or sell.

In Version 2.23.9 or earlier of the Coinext matching engine software, quotes and orders are
synonymous. They both can result in a sell or a buy. This is because the matching engine (like most
matching engines) requires a “firm quote” — a guaranteed bid or ask. For both quotes and orders,
trading priority is the same, and no preference is given one over the other. In code, the matching
engine flags a quote for eventual regulatory and compliance rules, but as far as current software
operation and trade execution, they behave equivalently.

Quoting is not enabled for the retail end user of the Coinext software. Only registered
market participants or market makers may quote.

Your trading venue may offer quotes separately from orders.

Best practices: Use the order-related API calls in preference to quote-related calls unless
you specifically require the quote-related calls.

Order-related API calls Quote-related API calls
CancelAllOrders CancelQuote

CancelOrder CreateQuote
CancelReplaceOrder GetOpenQuotes
GetOpenOrders UpdateQuote

GetOrderFee

GetOrderHistory

GetOrderStatus

ModifyOrder

SendOrder

Background Information

Contents Common to Many API Calls

These items appear in many of the API calls. Rather than explain them in place, we explain
them here.

Note: There is occasional variance in the naming, spelling, and capitalization of string names, even those
string/value pairs that refer to the same thing. For example, Assetld and Productld are not
interchangeable, even though they refer to the same data. Naming, spelling, and capitalization must
follow the forms shown in the document.

Order Types

Used by: CancelReplaceOrder, GetOpenOrders, GetOpenQuotes, GetOrderFee,
GetOrderHistory, GetOrderHistoryByOrderld, GetOrdersHistory, GetOrderStatus,

and SendOrder.
Where:

Type Definition

0 Unknown The order type is unknown. Because all orders have a type, this is an error
condition.

1 Market An order to buy or sell an instrument at the best available price. Contains no
restrictions on price or time frame.

2 Limit An order to buy or sell a set amount of an instrument at a specified price or better.
A limit order may not be executed if the price set is not met during the time that
the order is open.

3 StopMarket An order to buy or sell only when an instrument reaches a set price. Once the
instrument reaches this price, the order becomes a market order.

4 StopLimit An order to buy or sell only when an instrument reaches a set price. Once the
instrument reaches this price, the order becomes a limit order to buy or sell at the
limit price or better.

5 TrailingStopMarket An order that sets the stop price for an instrument at a price with a fixed offset
relative to the market price. If the market moves and the stop price is reached,
the order becomes a market order.

6 TrailingStopLimit An order that recalculates the stop price for an instrument at a fixed offset relative
to the market price. It also recalculates the limit price based on a different fixed
offset. If the market reaches the stop price, the order becomes a limit order.

7 BlockTrade A privately executed trade.

Contents Common to Many API Calls

Display Quantity

Used by: CancelReplaceOrder, GetOpenOrders, GetOpenQuotes, GetOrderHistory,
GetOrderHistoryByOrderld, GetOrdersHistory, GetOrderStatus, and SendOrder

Display Quantity is the quantity of a product available to buy or sell that is publicly displayed
to the market. A larger quantity may be made available for buying or selling, but it may
be disadvantageous to show that amount all at once.

The number of units in a DisplayQuantity field appears as that number until the total number
of units available or sought drops below the DisplayQuantity value set by the user. For example,
if there are 100 units offered, but the DisplayQuantity value is set to 10, 10 continues to display as
trading continues, until the number of units available for sale drops below 10.

The default value is 1.

To make use of a DisplayQuantity value, an order must be a limit order with a reserve. See
“Order Types” on page 7.

Time- and Date-Stamp Formats

Coinext software uses three different time- and date-stamp formats. Unless otherwise
specified, POSIX format is used.

>3 POSIXct class stores date/time values as the number of seconds since 1 January 1970
(long integer). Coinext software often multiplies this number by 1000 for the number of
milliseconds since 1 January 1970. For more information on this format, consult:
https://www.stat.berkeley.edu/~s133/dates.html

»» ISO 8601 format stores the date and time with its time zone (in Coinext, that time
zone is always Zulu or UTC time). For example:

yyyymmddThhmmssZ
20080915T1553002

Where T indicates the beginning of the time information, and Z (Zulu/UTC) indicates the time
zone — in this case, Zulu time. For more information on this format, consult:
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/a003169814.htm

»» Microsoft ticks format represents the number of ticks that have elapsed since 00:00:00
UTC, 1 January 0001, in the Gregorian calendar. A single tick represents one hundred
nanoseconds (one ten-millionth of a second). There are 10,000 ticks in a millisecond;
ten million ticks in a second. It does not include the number of ticks attributable to
leap-seconds.

Microsoft provides the following sample code in C#
(https://msdn.microsoft.com/en-us/library/system.datetime.ticks(v=vs.110).aspx):
DateTime centuryBegin = new DateTime (2001, 1,
1); DateTime currentDate = DateTime.Now;
long elapsedTicks = currentDate.Ticks - centuryBegin.Ticks;
TimeSpan elapsedSpan = new TimeSpan (elapsedTicks);

Console.Writeline (“Elapsed from the beginning of the century

to {0:f}:”,

currentDate) ;
Console.WriteLine (% {0:NO} nanoseconds”, elapsedTicks * 100);
Console.WriteLine (% {0:NO} ticks”, elapsedTicks);
Console.WriteLine (% {0:N2} seconds”, elapsedSpan.TotalSeconds) ;
Console.WriteLine (% {0:N2} minutes”, elapsedSpan.TotalMinutes) ;
Console.WriteLine (% {0:NO} days, {1} hours, {2} minutes, {3}
seconds”,

elapsedSpan.Days, elapsedSpan.Hours,
elapsedSpan.Minutes, elapsedSpan.Seconds) ;
// If run on December 14, 2007, at 15:23, this example displays the
// following output to the console:

// Elapsed from the beginning of the century to Friday, December 14,
2007 3:23 PM:
// 219,338,580,000,000,000 nanoseconds

Code continued on page 9

Contents Common to Many API Calls

Code continued from page 8

// 2,193,385,800,000,000 ticks

// 219,338,580.00 seconds

// 3,655,643.00 minutes

// 2,538 days, 15 hours, 23 minutes, 0 seconds

The Trading Day

Most Coinext installations operate 24-hour computer-based trading venues. The trading day
runs from UTC Midnight to UTC Midnight (essentially, London UK time, but without a summer
offset). For values that comprise a per-day quantity (TotalDayDeposits, for example), the day runs
from UTC Midnight to UTC Midnight, regardless of the venue’s nominal location.

Deposit and Withdraw Templates

Templates provide a set of information about banking tasks during deposits and withdrawals,
in the form of specific string/value pairs. Each template has a name. There are different templates
for different types of deposit and withdrawal, determined by the product or asset (BitCoin,
Monero, US Dollar, etc.), the specific bank or other account provider, and the information that the
account provider requires for transactions.

Most templates are used for withdrawals.

Following, are two example templates.

“TemplateFormType”: “Standard”,
{
“Full Name”: “John Smith”,
“Language”: “en”,
“Comment” ww,
“BankAddress”: “123 Fourth St.”,
“BankAccountNumber”: “12345678",
“BankAccountName”: “John Smith & Sons”,
“SwiftCode”: “ABCDUSALl”
}
“TemplateFormType”: “TetherRpcWithdraw”,
{
“TemplateType”: “TetherRpcWithdraw”,
“Comment”: “TestWithdraw”,
“ExternalAddress”: “ms6C3pKAAr8gRCcnVebs8VRkVrjcvgNYv3”

}

The content of the template depends on the account provider that you use for deposits and
withdrawals. The account provider does not supply the template per se (they do, however,
determine the fields that are in the template). The template is specific to each account provider.
In one case, an unusual requirement of the account provider necessitated in the pre-population of
certain request fields.

To determine which withdrawal template types are available to you,
call GetWithdrawTemplateTypes.

Report Types

There are three report types:

»» Trade Activity: Generates a report on both open and executed trades made by a set of
Account IDs on a given Order Management System during a specified period.

»» Transaction: Generates a report on all transactions executed by a set of Account IDs on
a given Order Management System during a specified period.

»» Treasury: Generates a report on all company treasury activities related to the trading
venue — withdrawals, transfers, and funds movements unrelated to trading. The report
comprises activities by a set of Account IDs on the given Order Management System for
a specified period.

The Order Management System echoes back the Report Type as a confirmation of the call.

Contents Common to Many API Calls

Request Status

When you generate a report on demand or schedule a report to run with some periodicity, the
return object for the call provides the status of the report request in the RequestStatus string/value
pair.

In the case of a Generate or Schedule call, RequestStatus returns Submitted; in the case of
a GetUserReportTickets call, RequestStatus returns the status of the report within the system.

Table 1. Request Status definitions

Type Definition

0 Submitted Your report order has been submitted to the system.

1 Validating The system is making sure that you have the correct permissions to request
the report. See “Permissions” on page 4.

2 Scheduled The report is scheduled to be run.

3 InProgress The report is currently being prepared.

4 Completed The report has been completed and delivered.

5 Aborting The system is stopping preparation of the report.

6 Aborted The report preparation has stopped.

7 UserCanceled You have canceled this report.

8 SysRetired The system has canceled the report on your behalf.

9 UserCanceledPending You have requested a report cancellation, but the report has not been
canceled yet.

API calls that return requestStatus are: GenerateTradeActivityReport,
GenerateTransactionActivityReport, GenerateTreasuryActivityReport,
GetUserReportTickets, ScheduleTradeActivityReport, ScheduleTreasuryActivityReport, and
ScheduleTreasuryActivityReport.

Authentication

authenticate

No authentication required

authenticate authenticates a user (logs in a user) for the current websocket session. You must call
authenticate in order to use the calls in this document not otherwise shown as “No authentication

required.”

Request

Use the standard, basic HTTP authentication, sending the username and password. A curl command would be
something like:

'https://your%40email.com:your-password@api.coinext.com.br:8443/AP/authenticate

curl -v
Response
Unsuccessful response:
{
“Authenticated”: false
}
Where:
String Value
Authenticated Boolean. The default response is false for an unsuccessful authentication.
A successful response returns the following (with Userld and SessionToken simulated):
{
“Authenticated”: true,
“Token”:”7d0ccf3a-ae63-44f5-a409-2301d80228bc”,
“UserId”: 1,
“AccountId”: 1,
“OMSId: 1
}
Where:
User Object:
String Value
Authenticated Boolean. The response is true for a successful authentication.

Table continued on page 16
15

authenticate

Table continued from page 15

SessionToken

string. SessionToken uniquely identifies the session on the OMS. By returning
the SessionToken in the response, the user can log in again if the session is

interrupted without going through two-factor authentication.

Userld

See Also

Authenticate2FA

integer. Returns the user ID of the authenticated user.

Authenticate2FA

No authentication required

Completes the second part of a two-factor authentication by sending the authentication token from the

non-Coinext authentication system to the Order Management System. The call returns a

verification that the user logging in has been authenticated, and a token.

Here is how the two-factor authentication process works:

1. Call WebAuthenticateUser. The response includes values for TwoFAType and
TwoFAToken. For example, TwoFAType may return “Google,” and the TwoFAToken
then returns a Google-appropriate token (which in this case would be a QR code).

2. Enter the TwoFAToken into the two-factor authentication program, for example, Google
Authenticator. The authentication program returns a different token.

3. Call Authenticate2FA with the token you received from the two-factor
authentication program (shown as YourCode in the request example below).

Request
{
“Code”: “YourCode”
}
Where:
String Value
Code string. Code holds the token obtained from the other authentication source.
Response
{
“Authenticated”: true,
“SessionToken”: “YourSessionToken”
}
Where:
String Value
Authenticated Boolean. A successful authentication returns true. Unsuccessful returns false.
SessionToken string. The SessionToken is valid during the current session for connections

from the same IP address. If the connection is interrupted during the session, you
can sign back in using the SessionToken instead of repeating the full two-factor
authentication process. A session lasts one hour after last-detected activity or

until logout.

17

Authenticate2FA

To send a session token to re-establish an interrupted session, send:
{

“SessionToken”: “YourSessionToken”

}

See Also
WebAuthenticateUser, LogOut

LogOut

No authentication required

Logout ends the current websocket session.

Request

There is no payload for a Logout request.
{1

Response

“result”:true,
“errormsg”:null,
“errorcode”:0,
“detail”:null

Where:

String Value

result Boolean. A successful logout returns true; and unsuccessful logout (an error
condition) returns false.

errormsg string. A successful logout returns null; the errormsg parameter for an
unsuccessful logout returns one of the following messages:

Not Authorized (errorcode 20)

Invalid Request (errorcode 100)

Operation Failed (errorcode 101)

Server Error (errorcode 102)

Resource Not Found (errorcode 104)

Not Authorized and Resource Not Found are unlikely errors for a LogOut.

errorcode integer. A successful logout returns 0. An unsuccessful logout returns one of the
errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

See Also:

authenticate, Authenticate2FA

19

LogOut

21

User Information Calls

GetUserinfo

Retrieves basic information about a user from the Order Management System. A user may only
see information about himself; an administrator (or superuser) may see, enter, or change
information about other users. See “Permissions” on page 4.

Request

No Userld is required in the request. The system assumes the current use.
{1

Response

A successful response displays the settings for the user. An unsuccessful response generates
an error code. See “Standard Response Object and Common Error Codes” on page 2.

{
“UserId”: 1,
“UserName”: “John Smith”,
“Email”: “email@company.com”,
“PasswordHash”: “”,
“PendingEmailCode”: “”,
“EmailVerified”: true,
“AccountId”: 1,
“DateTimeCreated”:”2017-10-26T17:25:582",
“AffiliateId”: 1,
“RefererIid”: 1,
“OMSId”: 1,
“Use2FA”: false,
“Salt”: “7,
“PendingCodeTime”: “0001-01-01T00:00:002",

Where:

String Value

Userld integer. ID number of the user whose information is being set.

UserName string. Log-in name of the user; “jsmith”.

Email string. Email address of the user; “person@company.com”.

PasswordHash string. Not currently used. Returns an empty string.

PendingEmailCode string. Usually contains an empty string. During the time that a new user has
been sent a registration email and before the user clicks the confirmation link, this
pair contains a GUID — a globally unique ID string..

EmailVerified Boolean. Has your organization verified this email as correct and operational?
True if yes; false if no. Defaults to false.

Accountld integer. The ID of the default account with which the user is associated.

Table continued on page 30

29

GetUserlinfo

Table continued from page 29

DateTimeCreated long integer. The date and time at which this user record was created, in ISO
8601 format. See “Time— and Date-Stamp Formats” on page 8.

Affiliatedld integer. The ID of an affiliated organization, if the user comes from an affiliated
link. This is set to 0 if the user it not associated with an affiliated organization.

Refererld integer. Captures the ID of the person who referred this account member to the
trading venue, usually for marketing purposes. Returns 0 if no referrer.

OMSId integer. The ID of the Order Management System with which the user is
associated.
Use2FA Boolean. True if the user must use two-factor authentication; false if the user

does not need to use two-factor authentication. Defaults to false.

Salt string. Reserved for future use. Currently returns an empty string.

PendingCodeTime long integer. A date and time in ISO 8601 format. Reserved. See “Time— and
Date-Stamp Formats” on page 8.

See Also

GetAvailablePermissionList, GetUserPermissions, RegisterNewUser,
SetUserConfig, SetUserInfo

30
38

Order-handling calls

CancelAllOrders

Cancels all open matching orders for the specified instrument, account, user (subject to

permission level) or a combination of them on a specific Order Management System. User and

account permissions govern cancellation actions. See “Permissions” on page 4. For more

information on quotes and orders, see the explanation of “Quotes and Orders” on page 5.

Note: Multiple users may have access to the same account.

Specifying this
information... c Is all orders f
User | Acc't | Instr ancels all orders for...
37 14 25
X X X Account #14 belonging to user #37 for instrument #25.
X X Account #14 belonging to user #37 for all instruments.
X X All accounts belonging to user #37 for instrument #25.
X All accounts belonging to user #37 for all instruments.
X X All users of account #14 for instrument #25.
X All users of account #14 for all instruments.
X All accounts of all users for instrument #25. (requires special permission)
All accounts of all users for all instruments (requires special permission)
Request
“AccountId”: 0, // conditionally optional
“UserId”: 0, // conditionally optional
“OMSId”: 0
“InstrumentId”: 0, // conditionally optional
Where:
String Value
Accountld integer. The account for which all orders are being canceled. Conditionally
optional.
Userld integer. The ID of the user whose orders are being canceled. Conditionally
optional.
OMSId integer. The Order Management System under which the account operates.

Required.

Table continued on page42

41

CancelAllOrders

Table continued from page 41

Instrumentld

Response

long integer. The ID of the instrument for which all orders are being cancelled.
Conditionally optional.

The response to CancelAllOrders verifies that the call was received, not that the orders
have been canceled successfully. Individual event updates to the user show orders as they
cancel. To verify that an order has been canceled, use GetOrderStatus or GetOpenOrders. :

Where:

String

“result”: true,
“errormsg”:
“errorcode”: 0,
“detail”: “”

. 14

wrr

Value

result

Boolean. If the call has been successfully received by the Order Management
System, result is true; otherwise, it is false.

errormsg

string. A successful receipt of the call returns null; the errormsg parameter for an
unsuccessful call returns one of the following messages:

Not Authorized (errorcode 20)

Invalid Request (errorcode 100)

Operation Failed (errorcode 101)

Server Error (errorcode 102)

Resource Not Found (errorcode 104)

errorcode

integer. A successful receipt of the call returns 0. An unsuccessful receipt of the
call returns one of the errorcodes shown in the errormsg list.

detail

See Also

string. Message text that the system may send. The content of this parameter is
usually null.

CancelOrder, CancelQuote, CancelReplaceOrder, CreateQuote, GetOpenOrders,
GetOpenQuotes, GetOrderStatus, ModifyOrder, SendOrder, UpdateQuote

42

CancelOrder

Cancels an open order that has been placed but has not yet been executed. Only a trading
venue operator can cancel orders for another user or account. See the explanation of ““Quotes
and Orders” on page 5.

Request
The OMS ID and the Order ID precisely identify the order you wish to cancel. The Order ID is
unique across an OMS.
If you specify the OMS ID and the Account ID, you must also specify at least the Client Order
ID. The OMS is unable to identify the order using only the OMS ID and the Client Order ID, as the
Client Order ID may not be unique.
{
“OMSId”: 0,
“AccountId”: 0 // conditionally optional
“ClientOrderId”: 0 // conditionally optional
“OrderId”: O, // conditionally optional
}
Where:
String Value
OMSId
integer. The Order Management System on which the order exists. Required.
Accountld integer. The ID of account under which the order was placed. Conditionally
optional.
ClientOrderld long integer. A user-assigned ID for the order (like a purchase-order number
assigned by a company). ClientOrderld defaults to 0. Conditionally optional.
Orderld long integer. The order to be cancelled. Conditionally optional.
Response

The response to CancelOrder verifies that the call was received, not that the order has been
canceled successfully. Individual event updates to the user show order cancellation. To verify
that an order has been canceled, call GetOrderStatus or GetOpenOrders. :

{

“result”: true,
“errormsg”: “”
“errorcode”: 0,
“detail”: w7

. ’

43

CancelOrder

Where:

String Value

result Boolean. Returns true if the call to cancel the order has been successfully
received, otherwise returns false.

errormsg string. A successful receipt of a call to cancel an order returns null; the errormsg
parameter for an unsuccessful call to cancel an order returns one of the following
messages:

Not Authorized (errorcode 20)

Invalid Request (errorcode 100)

Operation Failed (errorcode 101)

Server Error (errorcode 102)

Resource Not Found (errorcode 104)

errorcode integer. A successfully received call to cancel an order returns 0. An
unsuccessfully recieved call to cancel an order returns one of the errorcodes

shown in the errormsg list.

detail string. Message text that the system may send. The contents of this parameter
are usually null.

See Also

CancelAllOrders, CancelQuote, CancelReplaceOrder, CreateQuote, GetOpenOrders,
GetOpenQuotes, GetOrderStatus, ModifyOrder, SendOrder, UpdateQuote

44

Cancels a quote that has not been executed yet.
Quoting is not enabled for the retail end user of the Coinext software. Only registered market

CancelQuote

participants or market makers may quote. Only a trading venue operator can cancel quotes for
another user. See the explanation of “Quotes and Orders” on page 5.

Request

You must identify the quote to be canceled by both BidQuoteld and AskQuoteld, which were
supplied by the system when the quote was created. You can optionally identify the canceled
quote using Accountld and Instrumentld. If the call does not include Accountld, the call assumes the

default Accountld for the logged-in user; if the call does not include Instrumentld, the call operates

on any instruments quoted by the account.

Where:

String

{

“OMSId”: 0,

“AccountId”: O,
“InstrumentId”: O,
“BidQuoteId”: 0, // required
“AskQuoteId”: 0, // required

Value

// conditionally optional
// conditionally optional

omsid

requested. Required.

integer. The ID of the Order Management System where the quote was

Accountld

integer. The ID of the account that requested the quote. Conditionally optional.

Instrumentld

long integer. The ID of the instrument being quoted. Conditionally optional.

BidQuoteld

integer. The ID of the bid quote. Required.

AskQuoteld

Response

integer. The ID of the ask quote. Required.

Returns two response objects, one for Bid and one for Ask.
The response to CancelQuote verifies that the call was received, not that the quote has been

canceled successfully. Individual event updates to the user show quotes as they cancel. To verify
that a quote has been canceled, use GetOpenQuotes.

Code continued on page 46

{

“bidresult”:
“result”:
“errormsg”:
“errorcode”: O,
“detail”: “7,

}”I

askresult”:
“result”:

w
true,

wrr

w
true,

45

CancelQuote

Code continued from page 45

Where:

String

“errormsg”: “7,
“errorcode”: O,
“detail”: 7,

Value

BidResult

object. Returns a standard response object for Bid (see below).

AskResult

object. Returns a standard response object for Ask.

Response objects for both BidResult and AskResult:

String

Value

result

Boolean. A successful receipt of the cancellation returns true; and unsuccessful
receipt of the cancellation (an error condition) returns false.

errormsg

string. A successful receipt of the cancellation returns null; the errormsg
parameter for an unsuccessful receipt returns one of the following messages:
Not Authorized (errorcode 20)

Invalid Request (errorcode 100)

Operation Failed (errorcode 101)

Server Error (errorcode 102)

Resource Not Found (errorcode 104)

errorcode

integer. A successful receipt of the cancellation returns 0. An unsuccessful
receipt returns one of the errorcodes shown in the errormsg list.

detail

See Also

string. Message text that the system may send. Usually null.

CancelAllOrders, CancelOrder, CancelReplaceOrder, CreateQuote, GetOpenOrders,
GetOpenQuotes, GetOrderStatus, ModifyOrder, SendOrder, UpdateQuote

46

CancelReplaceOrder

CancelReplaceOrder is single API call that both cancels an existing order and replaces it with a
new order. Canceling one order and replacing it with another also cancels the order’s priority in
the order book. You can use ModifyOrder to preserve priority in the book; but ModifyOrder
only allows a reduction in order quantity.

Note:

CancelReplaceOrder sacrifices the order’s priority in the order book.

Request

“OMSId”: 0,
“OrderIdToReplace”: O,
“ClientOrdId”: O,
“OrderType”: {
“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”
]
}I
“Side”: {
“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”,
]
}I
“AccountId”: 0,
“InstrumentId”: O,
“TrailingAmount”: O,
“LimitOffset”: O,
“DisplayQuantity”: 0,
“LimitPrice”: O,
“StopPrice”: 0, // conditionally optional
“PegPriceType”: {
“Options”: [
“Unknown”,
“Last”,
“Bid”,
“Ask”,
“Midpoint”
]
}I
“TimeInForce”: {
“Options”: [
“Unknown”,
“GTC”,
“I1oc”,
“FOK”,

Code continues on page 48

47

CancelReplaceOrder

Code continued from page 47
“OrderIdOCO”: O,

“Quantity”: O,

}

Where:
String Value
OMSId integer. The ID of the Order Management System on which the order is being
canceled and replaced by another order.
OrderldToReplace long integer. The ID of the order to replace with this order.

ClientOrderld

long integer. A user-assigned ID for the new, replacement order (like a
purchase-order number assigned by a company). This ID is useful for recognizing

future states related to this order. ClientOrderld defaults to 0.

OrderType

string. The type of the replacement order: See Order Types in “Contents
common to many API calls.

0 Unknown

1 Market

2 Limit

3 StopMarket

4 StopLimit

5 TrailingStopMarket
6 TrailingStopLimit

7 BlockTrade

Side

string. The side of the replacement order:

0 Buy

1 Sell

2 Short (reserved for future use)
3 Unknown (error condition)

Accountld

integer. The ID of the account under which the original order was placed and the
new order will be placed.

Instrumentld

integer. The ID of the instrument being traded.

TrailingAmount

real. The offset by which to trail the market in one of the trailing order types.
Set this to the current price of the market to ensure that the trailing offset is the

amount intended in a fast-moving market.

LimitPrice

real. The price at which to execute the new order, if the order is a Limit order.

StopPrice

real. The price at which to execute the new order, if the order is a Stop order
(either buy or sell).

PegPriceType

string. When entering a stop/trailing order, set PegPrice Type to the type of price
that pegs the stop.

1 Last

2 Bid

3 Ask

4 Midpoint

Table continued on page 49

Table continued from page 48

CancelReplaceOrder

TimelnForce string. The period during which the new order is executable.
0 Unknown (error condition)
1 GTC good 'til canceled
3 10C immediate or canceled
4 FOK fill or kill — fill the order immediately, or cancel it immediately
There may be other settings for TimelnForce depending on the trading venue.

OrderldOCO integer. One Cancels the Other — If the order being canceled in this call is order
A, and the order replacing order A in this call is order B, then OrderldOCO refers
to an order C that is currently open. If order C executes, then order B is canceled.
You can also set up order C to watch order B in this way, but that will require an
update to order C.

Quantity real. The amount of the order (buy or sell).

Response

The response returns the new replacement order ID and echoes back any replacement client

ID you have supplied, along with the original order ID and the original client order ID.

{

“ReplacementOrderId”: 1234,
“ReplacementClOrdId”: 1561,
“OrigOrderId”: 5678,
“O0rigClOordId”: 91011,

Where:

String

Value

ReplacementOrderld

integer. The order ID assigned to the replacement order by the server.

ReplacementCIOrdld

long integer. Echoes the contents of the ClientOrderld value from the request.

OrigOrderld

integer. Echoes OrderldToReplace, which is the original order you are replacing.

OrigCIOrdId

See Also

long integer. Provides the client order ID of the original order (not specified in the
requesting call).

CancelAllOrders, CancelOrder, CancelQuote, CreateQuote, GetOpenOrders,
GetOpenQuotes, GetOrderStatus, ModifyOrder, SendOrder, UpdateQuote

49

CancelReplaceOrder

50

Request

CreateQuote

Creates a quote. A quote expresses a willingness to buy or sell at a given price. See “Quotes and
Orders” on page 5 for a discussion of how quotes and orders differ. Both a quote and an order will

execute. Quoting is not enabled for the retail end user of Coinext software. Only registered market

participants or market makers may quote.

Where:

String

“oMSI1Id”: 0,
“AccountId”: O,
“InstrumentId”: O,

“Bid”: O,
“BidQty”: 0,
“Ask”: O,
“AskQty”: 0,
Value

omsid

integer. The ID of the Order Management System on which the quote is being
created. Required.

Accountld

integer. The ID of the account in which the quote is being created. If the call
provides no Accountld, the system assumes the default account ID for the

logged-in user on the OMS.

Instrumentld

long integer. The ID of the instrument being quoted. Required.

Bid

real. The bid price. Required.

BidQty

real. The quantity of the bid. Required.

Ask

real. The ask price. Required.

AskQty

Response

Code continued on page 52

real. The quantity of the ask. Required.

“BidQuoteId”: O,

“BidResult”: “{
“result”: true,
“errormsg”: “7,
“errorcode”: O,
“detail”: “7,

}”I

“AskQuoteId”: O,

“AskResult”: “{
“result”: true,

51

CreateQuote

52

Code continued from page 51

See Also

wrr

“errormsg”:

“errorcode”: O,

“detail”: “7,

}
Where:

String Value
BidQuoteld integer. The ID of the bid quote returned by the Order Management System.
BidResult string. Returns a standard response object for Bid.
AskQuoteld integer. The ID of the ask quote returned by the Order Management System.
AskResult string. Returns a standard response object for Ask.

Response objects for both BidResult and AskResult.

String

Value

result

Boolean. A successful receipt of the request to create a quote returns true; and
unsuccessful receipt of the request (an error condition) returns false.

errormsg

string. A successful receipt of the request returns null; the errormsg parameter
for an unsuccessful receipt returns one of the following messages:

Not Authorized (errorcode 20)

Invalid Request (errorcode 100)

Operation Failed (errorcode 101)

Server Error (errorcode 102)

Resource Not Found (errorcode 104)

errorcode

integer. A successful receipt of the cancellation returns 0. An unsuccessful
receipt returns one of the errorcodes shown in the errormsg list.

detail

string. Message text that the system may send. Usually null.

CancelQuote, GetOpenQuotes, UpdateQuote

Retrieves a list of positions (balances) for a specific user account running under a specific
Order Management System. The trading day runs from UTC Midnight to UTC Midnight. See
“The Trading Day” on page 9 for more information.

{

GetAccountPositions

“AccountId”:4,
“OMSId”: 1

Value

integer. The ID of the authenticated user’s account on the Order Management
System for which positions will be returned.

Request
Where:
String
Accountld
OMSId
Response

The response returns an array of one or more positions for the account. This example

response has returned two positions:

[

{

// first position
“OMSId”:1,
“AccountId”:4,
“ProductSymbol”:”BTC”
“ProductId”:1
“Amount”:0,

“Hold”:O0,
“PendingDeposits”:0,
“PendingWithdraws”:0,
“TotalDayDeposits”:0,
“TotalDayWithdraws”:0,

“TotalMonthWithdraws”:0

//second position
“OMSId”:1,
“AccountId”:4,
“ProductSymbol”:”USD”,
“ProductId”:2,
“Amount”:0, “Hold”:O0,
“PendingDeposits”:0,

“PendingWithdraws”:0,
“TotalDayDeposits”:0,
“TotalDayWithdraws”:0,

“TotalMonthWithdraws”:0

integer. The ID of the Order Management System to which the user belongs. A
user will belong only to one OMS.

57

GetAccountPositions

58

Where:

String

Value

omsid

Integer. The ID of the Order Management System (OMS) to which the user
belongs. A user will only ever belong to one Order Management System.

Accountld

integer. Returns the ID of the user’s account to which the positions belong.

ProductSymbol

string. The symbol of the product on this account’s side of the trade. For
example:

BTC — BitCoin

USD — US Dollar

NZD — New Zealand Dollar

Many other values are possible depending on the nature of the trading venue.
See “Products and Instruments” on page 4 for the difference between these
terms.

Productld

integer. The ID of the product being traded. The system assigns product IDs as
they are entered into the system. See “Products and Instruments” on page 4
for the difference between products and instruments. Use GetProduct to return

information about the product by its ID.

Amount

real. Unit amount of the product; for example, 10 or 138.5.

Hold

real. Amount of currency held and not available for trade. A pending trade of 100
units at $1 each will reduce the amount in the account available for trading by
$100. Amounts on hold cannot be withdrawn while a trade is pending.

PendingDeposits

real. Deposits accepted but not yet cleared for trade.

PendingWithdraws

real. Withdrawals acknowledged but not yet cleared from the account. Amounts
in PendingWithdraws are not available for trade.

TotalDayDeposits real. Total deposits on today’s date. The trading day runs between UTC Midnight
and UTC Midnight.

TotalDayWithdraws real. Total withdrawals on today’s date. The trading day runs between UTC
Midnight and UTC Midnight.

TotalMonthWithdraws real. Total withdrawals during this month to date. The trading day runs between

See Also

UTC Midnight and UTC Midnight — likewise a month begins at UTC Midnight on
the first day of the month.

GetOpenOrders, GetOpenQuotes, GetOrderStatus, GetTradesHistory

GetAccountTrades

Requests the details on up to 200 past trade executions for a single specific user account and its

Order Management System, starting at index i, where i is an integer identifying a specific execution

in reverse order; that is, the most recent execution has an index of 0, and increments by one as trade

executions recede into the past.

The operator of the trading venue determines how long to retain an accessible trading history

before archiving.

Request

Where:

String

“AccountId”:4,

“OMSId”: 1,

“StartIndex”:0,

“Count”:2
Value

Accountld

integer. The ID of the authenticated user’s account.

omsid

integer. The ID of the Order Management System to which the user belongs. A
user will belong only to one OMS.

Startindex

integer. The starting index into the history of trades, from 0 (the most recent
trade).

Count

Response

The response is an array of objects, each of which represents the account’s side of a trade

(either buy or sell). The example shows an array of two buy executions.

Code continued on page 60

“TradeTimeMS”: -62135446664520,
“Fee”: O,
“FeeProductId”: O,
“OrderOriginator”: 1,
“OoMSId”: 1,
“ExecutionId”: 1,
“TradeId”: 1,
“OrderId”: 1,
“AccountId”: 4,
“SubAccountId”: O,
“ClientOrderId”: O,
“InstrumentId”: 1,
“Side”: “Buy”,
“Quantity”: 1,
“RemainingQuantity”: O,
“Price”: 100,

integer. The number of trades to return. The system can return up to 200 trades.

59

GetAccountTrades

Code continued from page 59

Where:

String

“Value”: 100,

“TradeTime”: 1501354796406,
“CounterParty”: null,
“OrderTradeRevision”: 1,
“Direction”: “NoChange”,
“IsBlockTrade”: false
“TradeTimeMS”: -62135446664520,
“Fee”: 0,

“FeeProductId”: O,
“OrderOriginator”: 1,
“OoMSId”: 1,

“ExecutionId”: 3,
“TradeId”: 2,
“OrderId”: 3,
“AccountId”: 4,
“SubAccountId”: O,
“ClientOrderId”: O,
“InstrumentId”: 1,

“Side”: “Buy”,
“Quantity”: 1,
“RemainingQuantity”: O,
“Price”: 1,
“Value”: 1,
“TradeTime”: 1501354796418,
“CounterParty”: null,
“OrderTradeRevision”: 1,
“Direction”: “NoChange”,
“IsBlockTrade”: false
Value

TradeTimeMS

long integer. The date and time stamp of the trade in Microsoft tick format and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

Fee

real. The fee for this trade in units and fractions of units (a $10 USD fee would be
10.00, a .5-BitCoin fee would be 0.5).

FeeProductld

integer. The ID of the product that denominates the fee. Product types will vary
on each trading venue. See GetProduct.

OrderOriginator

integer. The user ID of the user who entered the order that caused the trade for
this account. (Multiple users can have access to an account.)

omsid

integer. The ID of the Order Management System to which the user belongs. A
user will belong only to one OMS.

Executionld

integer. The ID of this account’s side of the trade. Every trade has two sides.

Tradeld

integer. The ID of the overall trade.

Orderld

long integer. The ID of the order causing the trade.

Accountld

integer. The Account ID that made the trade.

SubAccountld

integer. Not currently used.

Table continued on page 61

Table continued from page 60

See Also

GetAccountTrades

Instrumentld

long integer. The ID of the instrument being traded. See “Products and
Instruments” on page 4 for the difference. See Getinstrument to find
information about this instrument by its ID.

Side

string. Buy or Sell

0 Buy

1 Sell

2 Short (reserved for future use)
3 Unknown (error condition)

Quantity

real. The unit quantity of the trade.

RemainingQuantity

integer. The number of units remaining to be traded by the order after this
execution. This number is not revealed to the other party in the trade. This value
is also known as “leave size” or “leave quantity.”

Price real. The unit price at which the instrument traded.

Value real. The total value of the deal. The system calculates this as:
unit price X quantity executed.

TradeTime integer. The time at which the trade took place, in POSIX format and UTC time
zone. See “Time— and Date-Stamp Formats” on page 8.

CounterParty long integer. Shows 0.

OrderTradeRevision

integer. This value increments if the trade has changed. Default is 1. For
example, if the trade busts (fails to conclude), the trade will need to be modified
and a revision number then will apply.

Direction

string. Shows if this trade has moved the book price up, down, or no change.
Values:

NoChange

UpTick

DownTick

IsBlockTrade

Boolean. Returns true if the trade was a reported trade; false otherwise.

GenerateTradeActivityReport, GetTradesHistory, ScheduleTradeActivityReport,
SubscribeTrades, UnsubscribeTrades

61

GetAccountTrades

62

GetAccountTransactions

Returns a list of transactions for a specific account on an Order Management System. The owner
of the trading venue determines how long to retain order history before archiving.

Note: In this call, “Depth” refers not to the depth of the order book, but to the count of trades to report.

Request
{
“oMSI1d”: 1,
“AccountId”: 1,
“Depth”: 200
}
Where:

String Value

OMSId integer. The ID of the Order Management System from which the account’s
transactions will be returned.

Accountld integer. The ID of the account for which transactions will be returned. If not
specified, the call returns transactions for the default account for the logged-in
user.

Depth integer. The number of transactions that will be returned, starting with the most
recent transaction.

Response

The response returns an array of transaction objects.
l

“TransactionId”: O,
“OMSId”: 0,
“AccountId”: 0,
“CR”: O,
“DR”: 0,
“Counterparty”: 0,
“TransactionType”: {
“Options”: [
“Fee”,
“Trade”,
“Other”,
“Reverse”,
“Hold”
]
}I
“ReferencelId”: O,
“ReferenceType”: {
“Options”: [
“Trade”,
“Deposit”,

Code continues on page 64

63

GetAccountTransactions

Code continued from page 63

]
}I

“Withdraw”,
“Transfer”,
“OrderHold”,
“WithdrawHold”,
“DepositHold”,
“MarginHold”

“ProductId”: O,
“Balance”: 0,
“TimeStamp”: O,

}7

Where:

String

Value

Transactionld

Integer. The ID of the transaction.

OMSId Integer. The ID of the Order Management System under which the requested
transactions took place.

Accountld Integer. The single account under which the transactions took place.

CR real. Credit entry for the account on the order book. Funds entering an account.

DR real. Debit entry for the account on the order book. Funds leaving an account.

Counterparty long integer. Shows 0.

TransactionType string. One of:

Fee — transaction is payment of a fee

Trade — transaction is a trade (most usual entry)

Other — non-trading transactions such as deposits and withdrawals
Reverse — a hold has been reversed by this transaction

Hold — funds are held while a transaction closes

Referenceld

long integer. The ID of the action or event that triggered this transaction.

ReferenceType string. The type of action or event that triggered this transaction. One of:
Trade
Deposit
Withdraw
Transfer
OrderHold
WithdrawHold
DepositHold
MarginHold

Productld integer. The ID of the product on this account’s side of the transaction. For
example, in a dollars-for-BitCoin transaction, one side will have the product Dollar
and the other side will have the product BitCoin. See “Products and Instruments”
on page 4 for more information about how these two items differ. Use
GetProduct to return information about a product based on its ID.

Balance real. The balance in the account after the transaction.

TimeStamp long integer. Time at which the transaction took place, in POSIX format and UTC

64

time zone.

See Also

GetAccountTransactions

GetAccountTransactions, ScheduleTransactionActivityReport

65

GetAccountTransactions

66

Getinstrument

No authentication required

Retrieves the details of a specific instrument from the Order Management System of the trading
venue. An instrument is a pair of exchanged products (or fractions of them) such as US dollars and
ounces of gold. See “Products and Instruments” on page 4 for more information about how
products and instruments differ.

Request

{
“OoMSId”: 1,
“InstrumentId”: 1

Where:

String Value

OMSId integer. The ID of the Order Management System from where the instrument is
traded.

Instrumentld long integer. The ID of the instrument.

Response

“OMSId”: 0,
“InstrumentId”: O,
“Symbol”: “7,
“Productl”: O,
“ProductlSymbol”: “”,
“Product2”: 0,
“Product2Symbol”: “”,
“InstrumentType”: {
“Options”: [
“Unknown”,
“Standard”
]
}I
“VenuelInstrumentId”: O,
“VenueId”: O,
“SortIndex”: 0,
“SessionStatus”: {
“Options”: [
“Unknown”,
“Running”,
“Paused”,
“Stopped”,
“Starting”
]
}I
“PreviousSessionStatus”: {
“Options”: [
“Unknown”,
“Running”,
“Paused”,
Code continued on page 68

67

Getinstrument

68

Code continued from page 67

“Stopped”,
“Starting”

]
}I

“SessionStatusDateTime”: “0001-01-01T05:00:002",
“SelfTradePrevention”: false,
“QuantityIncrement”: O,

Where:

String

Value

omsid

integer. The ID of the Order Management System on which the instrument is
traded.

Instrumentld

long integer. The ID of the instrument.

Symbol string. Trading symbol of the instrument.

Product1 integer. The first product comprising the instrument. For example, USD in a USD/
BitCoin instrument.

Product1Symbol string. The symbol for Product 1 on the trading venue. For example, USD.

Product2 integer. The second product comprising the instrument. For example, BitCoin in
a USD/BitCoin instrument.

Product2Symbol string. The symbol for Product 1 on the trading venue. For example, BTC.

InstrumentType string. The type of the instrument. All instrument types currently are standard,

an exchange of one product for another (or unknown, an error condition), but this
may expand to new types in the future.

Unknown

Standard

Venuelnstrumentid

long integer. If the instrument trades on another trading venue to which the user
has access, this value is the instrument ID on that other venue. See Venueld.

Venueld integer. The ID of the trading venue on which the instrument trades, if not this
venue. See Venuelnstrumentld.
Sortindex integer. The numerical position in which to sort the returned list of instruments

on a visual display. Since this call returns information about a single instrument,
Sortindex should return 0.

SessionStatus

string. Is the market for this instrument currently open and operational? Returns
one of:

Unknown
Running
Paused
Stopped

Starting

PreviousSessionStatus

string. What was the previous session status for this instrument? One of:

Unknown
Running
Paused
Stopped
Starting

Table continued on page 69

Table continued from page 68

Getinstrument

SessionStatusDateTime

string. The time and date at which the session status was reported, in ISO 8601
format. See “Time— and Date-Stamp Formats” on page 8.

SelfTradePrevention

Boolean. An account trading with itself still incurs fees. If this instrument
prevents an account from trading the instrument with itself, the value returns true;
otherwise defaults to false.

Quantitylncrement

See Also

integer. The number of decimal places for the smallest quantity of the instrument
that can trade (analogous to smallest lot size). For example, the smallest
increment of a US Dollar that can trade is 0.01 (one cent, or 2 decimal places).
Current maximum is 8 decimal places. The default is 0.

GetInstruments, GetProduct, GetProducts

69

Getinstrument

70

Getinstruments

No authentication required

Retrieves an array of instrument objects describing all instruments available on a trading venue
to the user. An instrument is a pair of exchanged products (or fractions of them) such as US
dollars and ounces of gold. See “Products and Instruments” on page 4 for more information
about how products and instruments differ.

Request
{
“OMSId”: 1
}
Where:
String Value
OMSId integer. The ID of the Order Management System on which the instruments are
available.
Response

The response for GetInstruments is an array of objects describing all the instruments available
to the authenticated user on the Order Management System.

[

{
“OMSId”: O,
“InstrumentId”: O,
“Symbol”: “7,
“Productl”: O,
“ProductlSymbol”: “”,
“Product2”: 0,
“Product2Symbol”: “7,
“InstrumentType”: {
“Options”: [
“Unknown”,
“Standard”
]

}I
“VenueInstrumentId”: O,
“VWenueId”: O,
“SortIndex”: O,
“SessionStatus”: {

“Options”: [

“Unknown”,
“Running”,
“Paused”,
“Stopped”,
“Starting”
]

Code continued on page 72

7

Getlnstruments

Code continued from page 71

Where:

String

}I

“PreviousSessionStatus”: {
“Options”: [
“Unknown”,

“Running”,

“Paused”,

“Stopped”,

“Starting”

}7

}I

]

“SessionStatusDateTime”: “0001-01-01T05:00:002",
“SelfTradePrevention”: false,
“QuantityIncrement”: O,

Value

omsid

integer. The ID of the Order Management System on which the instrument is
traded.

Instrumentld

long integer. The ID of the instrument.

Symbol

string. Trading symbol of the instrument.

Product1

integer. The first product comprising the instrument. For example, USD in a USD/
BitCoin instrument.

Product1Symbol

string. The symbol for Product 1 on the trading venue. For example, USD.

Product2

integer. The second product comprising the instrument. For example, BitCoin in
a USD/BitCoin instrument.

Product2Symbol

string. The symbol for Product 2 on the trading venue. For example, BTC.

InstrumentType

string. The type of the instrument. All instrument types currently are standard,
an exchange of one product for another (or unknown, an error condition), but this

may expand to new types in the future.
Unknown
Standard

Venuelnstrumentld

long integer. If the instrument trades on another trading venue to which the user
has access, this value is the instrument ID on that other venue. See Venueld.

Venueld

integer. The ID of the trading venue on which the instrument trades, if not this
venue. See Venuelnstrumentld.

Sortindex

integer. The numerical position in which to sort the returned list of instruments on
a visual display.

SessionStatus

string. Is the market for this instrument currently open and operational? Returns
one of:

Unknown
Running
Paused
Stopped
Starting

Table continued on page 73

72

Table continued from page 72

Getinstruments

PreviousSessionStatus

string. What was the previous session status for this instrument? One of:

Unknown
Running
Paused
Stopped
Starting

SessionStatusDateTime

string. The time and date at which the session status was reported, in ISO 8601
format. See “Time— and Date-Stamp Formats” on page 8.

SelfTradePrevention

Boolean. An account trading with itself still incurs fees. If this instrument
prevents an account from trading the instrument with itself, the value returns true;
otherwise defaults to false.

Quantitylncrement

See Also

integer. The number of decimal places for the smallest quantity of the instrument
that can trade (analogous to smallest lot size). For example, the smallest
increment of a US Dollar that can trade is 0.01 (one cent, or 2 decimal places).
Current maximum is 8 decimal places. The default is 0.

GetInstrument, GetProduct, GetProducts

73

Getinstruments

74

Request

GetOpenOrders

Returns an array of 0 or more orders that have not yet been filled (open orders) for a single account

for a given user on a specific Order Management System. The call returns an empty array if a user

has no open orders.

{
“AccountId”:4,
“OMSId”: 1

Where:
String Value
Accountld integer. The ID of the authenticated user’s account.
OMSId integer. The ID of the Order Management System to which the user belongs. A

Response

Code continues on page 76

user will belong only to one OMS.

This example response for GetOpenOrders returns an array containing both a buy-side and a

sell-side order. The call returns an empty array if there are no open orders for the account.

[

“Side”: “Buy”,

“OrderId”: 1,

“Price”: 100,

“Quantity”: 1,
“DisplayQuantity”: 1,
“Instrument”: 1,

“Account”: 4,

“OrderType”: “Limit”,
“ClientOrderId”: O,
“OrderState”: “Working”,
“ReceiveTime”: 1501354241987,
“ReceiveTimeTicks”:
“OrigQuantity”: 1,
“QuantityExecuted”: O,
“AvgPrice”: O,
“CounterPartyId”: O,
“ChangeReason”:
“OrigOrderId”: 1,

“OrigClOrdIid”: O,

“EnteredBy”: 1,

“IsQuote”: false,

“InsideAsk”: 9223372036.854775807
“InsideAskSize”: 0,

“InsideBid”: 100,
“InsideBidSize”: 1,
“LastTradePrice”: 0,
“RejectReason”: “”,

“IsLockedIn”: false,

636369510419870950,

“NewInputAccepted”,

’

75

GetOpenOrders

Code continued from page 75

“OMSId”: 1

}I

{
“Side”: “Sell”,
“OrderId”: 2,
“Price”: 150,
“Quantity”: 1,
“DisplayQuantity”: 1,
“Instrument”: 1,
“Account”: 4,
“OrderType”: “Limit”,
“ClientOrderId”: O,
“OrderState”: “Working”,
“ReceiveTime”: 1501354246718,
“ReceiveTimeTicks”: 636369510467182396,
“OrigQuantity”: 1,
“QuantityExecuted”: O,
“AvgPrice”: O,
“CounterPartyId”: O,
“ChangeReason”: “NewInputAccepted”,
“OrigOrderId”: 2,
“OrigClOrdIid”: O,
“EnteredBy”: 1,
“IsQuote”: false,
“InsideAsk”: 150,
“InsideAskSize”: 1,
“InsideBid”: 100,
“InsideBidSize”: 1,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,
“OMSId”: 1

String Value

Side string. The open order can be Buy or Sell.
0 Buy
1 Sell

2 Short (reserved for future use)
3 Unknown (error condition)

Orderld long integer. The ID of the open order. The OrderID is unique in each Order
Management Systsem.

Price real. The price at which the buy or sell has been ordered.
Quantity real. The quantity to be bought or sold.
DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.

To display a DisplayQuantity value, an order must be a Limit order with a reserve.
See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument integer. ID of the instrument being traded. See Getinstruments.

Account integer. The ID of the account that placed the order.

OrderType string. There are currently seven types of order. See “Order Types” on page
7.

ClientOrderld long integer. A user-assigned ID for the order (like a purchase-order number

assigned by a company). ClientOrderld defaults to 0.

Table continued on page 77

76

Table continued from page 76

GetOpenOrders

OrderState

string. The current condition of the order. There are five order states:
Working

Rejected

Canceled

Expired

FullyExecuted

ReceiveTime

long integer. The time at which the system received the order, in POSIX format
and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

ReceiveTimeTicks

long integer. The time stamp of the received order in Microsoft Tick format, and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

OrigQuantity

integer. Original quantity of the order. The quantity of the actual execution may
be lower than this number, but OrigQuantity shows the quantity in the order as
placed.

QuantityExecuted

Integer. The number of units executed in this trade.

AvgPrice

real. Not currently used.

CounterPartyld

long integer. Shows 0.

ChangeReason

string. The reason that an order has been changed. Values:

1 NewlnputAccepted

2 NewlnputRejected

3 OtherRejected

4 Expired

5 Trade

6 SystemCanceled_NoMoreMarket
7 SystemCanceled_BelowMinimum
8 NoChange

100 UserModified

OrigOrderld

long. ID of the original order. This number is also appended to
CancelReplaceOrder. See CancelReplaceOrder.

EnteredBy

integer. User ID of the person who entered the order.

IsQuote

Boolean. True if the open order is a quote; false if not. See “Quotes and Orders”
on page 5.

InsideAsk/InsideBid

real. Best price available at time of entry (for ask or bid, respectively).

InsideAskSize/ real. Quantity available at the best inside ask (or bid) price.
InsideBidSize
LastTradePrice real. Last trade price for this product before this order was entered.

RejectReason

string. If this order was rejected, RejectReason holds the reason for the
rejection.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
trade for both. Otherwise false.
OMSId integer. ID of the Order Management System on which the order was placed.

7

GetOpenOrders

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOrdersHistory,
GetOrderHistoryByOrderld, GetOrdersHistory, GetOrderStatus, ModifyOrder, SendOrder

78

GetOpenQuotes

Returns the current bid and ask quotes for a given instrument ID and account ID.

Request

Where:

String

“oMSI1Id”: 0,
“AccountId”: O,
“InstrumentId”: O,

Value

omsid

integer. The ID of the Order Management System where the instrument is traded
whose quote may be open.

Accountld

integer. The ID of the account whose open quotes will be returned.

Response

Code continued on page 8

Instrumentld

long integer. The ID of the instrument being quoted.

Returns a response object comprising a bid and an ask object.

0

{

“Bid”: |

“Side”: {
“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”
]
}7
“OrderId”: O,
“Price”: 0,
“Quantity”: 0,

“DisplayQuantity”

“Instrument”: O,

“Account”: 0,

“OrderType”: {
“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,

“TrailingStopMarket”,
“TrailingStopLimit”,

“BlockTrade”
]
}!
“ClientOrderId”:
“OrderState”: {

: 0,

0,

79

GetOpenQuotes

Code continued from page 79 “ . "
Options”: [

“Unknown”,
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”
]
} ’
“ReceiveTime”: O,
“ReceiveTimeTicks”: O,
“OrigQuantity”: 0,
“QuantityExecuted”: O,
“AvgPrice”: 0,
“CounterPartyId”: O,
“ChangeReason”: {
“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled NoMoreMarket”,
“SystemCanceled BelowMinimum”,
“NoChange”,
“UserModified”
]
} 4
“OrigOrderId”: O,
“OrigClOrdIid”: O,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: O,
“InsideAskSize”: 0,
“InsideBid”: 0,
“InsideBidSize”: 0,
“LastTradePrice”: O,
“RejectReason”: “7,
“IsLockedIn”: false,
“OMSId”: 0,
} 4
“Ask”: |
“Side”: {
“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”
]
} ’
“OrderId”: O,
“Price”: 0,
“Quantity”: O,
“DisplayQuantity”: 0,
“Instrument”: O,
“Account”: 0,
“OrderType”: {
“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”
]
} ’
“ClientOrderId”: O,
“OrderState”: {
Code continued on page 81

80

Code continued from page 80

Where:

String

}I

“Options”: [
“Unknown”,
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”
]
}!
“ReceiveTime”: O,
“ReceiveTimeTicks”: O,
“OrigQuantity”: 0,
“QuantityExecuted”: O,
“AvgPrice”: O,
“CounterPartyId”: O,
“ChangeReason”: {
“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,

“SystemCanceled NoMoreMarket”,
“SystemCanceled BelowMinimum”,

“NoChange”,
“UserModified”
]

}7
“OrigOrderId”: O,
“OrigClOrdIid”: O,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: O,
“InsideAskSize”: 0,
“InsideBid”: O,
“InsideBidSize”: 0,
“LastTradePrice”: 0,
“RejectReason”: “”
“IsLockedIn”: false,
“OMSId”: O,

Value

GetOpenQuotes

Bid

Bid object (see below)

Ask

Bid and Ask objects differ only in the values for the strings.

String

Ask object (see below)

Value

Side

string. One of:

0 Buy

1 Sell

2 Short (reserved for future use)
3 Unknown (error condition)

Table continued on page 82

81

GetOpenQuotes

82

Table continued from page 81

Orderld

long integer. The ID of this quote. Quotes and orders are both executable. See
“Quotes and Orders” on page 5.

Price

real. Price of the Bid/Ask quote.

Quantity

real. Quantity of the Bid/Ask quote.

DisplayQuantity

real. The quantity available to buy or sell that is publicly displayed to the market.
To display a DisplayQuantity value, an order must be a Limit order with a reserve.
See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument

integer. The ID of the instrument being quoted.

Account

integer. The ID of the account quoting the instrument.

OrderType

string. One of:

Unknown

Market

Limit

StopMarket
StopLimit
TrailingStopMarket
TrailingStopLimit
BlockTrade

See “Order Types” on page 7.

ClientOrderld

long integer. A user-assigned ID for the quote (like a purchase-order number
assigned by a company). ClientOrderld defaults to 0.

OrderState

string. One of:

Unknown
Working
Rejected
Canceled
Expired
FullyExecuted

An open quote will probably have an OrderState of Working.

ReceiveTime

long integer. The time at which the system received the quote, in POSIX format
and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

ReceiveTimeTicks

long integer. The time stamp of the received quote in Microsoft Ticks format and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

OrigQuantity

real. If the quote has been changed, this value shows the original quantity of the
quote.

QuantityExecuted

real. This value states the quantity that was executed. It may be the same as the
quantity of the quote; it may be different.

AvgPrice

real. Not currently used.

CounterPartyld

long integer. Shows 0.

Table continued on page 83

Table continued from page 82

See Also

GetOpenQuotes

ChangeReason string. If the quote has been changed, this value shows the reason. One of:
Unknown
NewlnputAccepted
NewlnputRejected
OtherRejected
Expired
Trade
SystemCanceled_NoMoreMarket
SystemCanceled_BelowMinimum
NoChange
UserModified

OrigOrderld integer. If the quote has been changed, shows the original order ID. (Quotes and
orders are in some ways interchangeable. See “Quotes and Orders” on page
5.

OrigClOrdIid long integer. If the quote has been changed, shows the original client order ID, a
value that the client can create (much like a purchase order).

EnteredBy integer. The ID of the user who entered the quote.

IsQuote Boolean. If this order is a quote (rather than an order), returns true, otherwise
false. Default is false.

InsideAsk real. Best Ask price available at time of entry (generally available to market
makers).

InsideAskSize real. Quantity available at the best inside ask price (generally available to market
makers).

InsideBid real. Best Bid price available at time of entry (generally available to market
makers).

InsideBidSize real. Quantity available at the best inside Bid price (generally available to market
makers)..

LastTradePrice real. The price at which the instrument last traded.

RejectReason

string. If the quote was rejected, this string value holds the reason.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
trade for both. Otherwise false.
OMSId integer. The ID of the Order Management System on which the quote was

created.

CancelQuote, CreateQuote, UpdateQuote

83

GetOpenQuotes

84

GetOrderFee

Returns an estimate of the fee for a specific order and order type. Fees are set and calculated by the
operator of the trading venue.

Request

Where:

String

“OMSId”: 0,
“AccountId”: 0,
“InstrumentId”: O,
“ProductId”: O,
“Amount”: 0,
“Price”: 0,
“OrderType”: {
“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”
]
}I
“MakerTaker”: {

“Options”: [
“Unknown”,
“Maker”,
“Taker”

]

} 4
Value

omsid

integer. The ID of the Order Management System on which the trade would take
place.

Accountld

integer. The ID of the account requesting the fee estimate.

Instrumentld

integer. The proposed instrument against which a trading fee would be charged.

Productld

integer. The ID of the product (currency) in which the fee will be denominated.

Amount

real. The quantity of the proposed trade for which the Order Management System
would charge a fee.

Price

real. The price at which the proposed trade would take place. Supply your price
for a limit order; the exact price is difficult to know before execution.

Table continued on page 86

85

GetOrderFee

Table continued from page 85

OrderType string. The type of the proposed order. One of:

0 Unknown

1 Market

2 Limit

3 StopMarket

4 StopLimit

5 TrailingStopMarket
6 TrailingStopLimit

7 BlockTrade

See ““Order Types” on page 7.

MakerTaker string. Depending on the venue, there may be different fees for a maker (the
order remains on the books for a period) or taker (the order executes directly). If

the user places a large order that is only partially filled, he is a partial maker.

0 Unknown
1 Maker
2 Taker
Response
{
“OrderFee”: 0.01,
“ProductId”: 1
}
Where:
String Value
OrderFee real. The estimated fee for the trade as described. The minimum value is 0.01.
Productld integer. The ID of the product (currency) in which the fee is denominated.
See Also

GetProduct, GetProducts

86

GetOrderHistory

Returns a complete list of all orders, both open and executed, for a specific account on the

specified Order Management System.

“oMsSI1id”: 1,
“AccountId”: 1

Value

integer. The ID of the Order Management System where the orders were placed.

Request
Where:
String
OMSId
Accountld
Response

integer. The ID of the account whose orders will be returned

The response returns an array of 1 or more order objects.

[

Code continued on page 88

“Side”: {
“Options”: [
“Buy”,
“sell”,
“Short”,
“Unknown”
]
}I
“OrderId”: O,
“Price”: 0,
“Quantity”: O,

“DisplayQuantity”:

“Instrument”: O,

“Account”: 0,

“OrderType”: {
“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,

“TrailingStopMarket”,
“TrailingStopLimit”,

“BlockTrade”
]
}I
“ClientOrderId”:
“OrderState”: {
“Options”: [
“Unknown”,

0,

87

GetOrderHistory

Code continued from page 87

Where:

String

“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”
]
}I
“ReceiveTime”: O,
“ReceiveTimeTicks”: O,
“OrigQuantity”: 0,
“QuantityExecuted”: O,
“AvgPrice”: 0,
“CounterPartyId”: O,
“ChangeReason”: {
“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled NoMoreMarket”,
“SystemCanceled BelowMinimum”,
“NoChange”,
“UserModified”
]
}I
“OrigOrderId”: O,
“0rigClordid”: O,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: O,
“InsideAskSize”: 0,
“InsideBid”: O,
“InsideBidSize”: 0,
“LastTradePrice”: O,
“RejectReason”: “7,
“IsLockedIn”: false,
“OMSId”: 0,

Value

Side

string. One of:

0 Buy

1 Sell

2 Short (reserved for future use)
3 Unknown (error condition).

Orderld

long integer. The ID of this order.

Price

real. Price of the order.

Quantity

real. Quantity of the order.

DisplayQuantity

real. The quantity available to buy or sell that is publicly displayed to the market.
To display a DisplayQuantity value, an order must be a Limit order with a reserve.
See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument

integer. The ID of the instrument being ordered.

Table continued on page 89

Table continued from page 88

GetOrderHistory

Account

integer. The ID of the account ordering the instrument.

OrderType

string. One of:

Unknown

Market

Limit

StopMarket
StopLimit
TrailingStopMarket
TrailingStopLimit
BlockTrade

See “Order Types” on page 7.

ClientOrderld

long integer. A user-assigned ID for the order (like a purchase-order number
assigned by a company). ClientOrderld defaults to 0.

OrderState

string. One of:

Unknown
Working
Rejected
Canceled
Expired
FullyExecuted

An open order will probably not yet be fully executed.

ReceiveTime

long integer. The time at which the system received the quote, in POSIX format.
See “Time- and Date-Stamp Formats” on page 8.

ReceiveTimeTicks

long integer. The time stamp of the received quote in Microsoft Ticks format. See
“Time— and Date-Stamp Formats” on page 8.

OrigQuantity

real. If the order has been changed, this value shows the original quantity.

QuantityExecuted

real. This value states the quantity that was executed in the order. It may be the
same as the quantity of the order; it may be different.

AvgPrice

real. Not currently used.

CounterPartyld

long integer. Shows 0.

ChangeReason

string. If the order has been changed, this value shows the reason. One of:

Unknown

NewlnputAccepted
NewlnputRejected

OtherRejected

Expired

Trade
SystemCanceled_NoMoreMarket
SystemCanceled_BelowMinimum
NoChange

UserModified

OrigOrderld

integer. If the order has been changed, shows the original order ID.

OrigClOrdId

long integer. If the order has been changed, shows the original client order ID, a
value that the client can create (much like a purchase order).

EnteredBy

integer. The ID of the user who entered the order in this account.

Table continued on page 90

89

GetOrderHistory

Table continued from page 89

IsQuote Boolean. If this order is a quote (rather than an order), returns true, otherwise
false. Default is false.

InsideAsk real. Best Ask price available at time of entry (generally available to market
makers).

InsideAskSize real. Quantity available at the best inside ask price (generally available to market
makers).

InsideBid real. Best Bid price available at time of entry (generally available to market
makers).

InsideBidSize real. Quantity available at the best inside Bid price (generally available to market
makers).

LastTradePrice real. The price at which the instrument last traded.

RejectReason string. If the order was rejected, this string value holds the reason.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
trade for both. Otherwise false.

OMSId integer. The ID of the Order Management System on which the order was
created.

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOpenQuotes,
GetOrderHistoryByOrderld, GetOrdersHistory, GetOrderStatus, ModifyOrder, SendOrder

90

GetOrderHistoryByOrderld

Retrieves the full order history of a specific order by its order ID, including any changes.

Request
{
“oMSI1d”: O,
“OrderId”: O,
}
Where:
String Value
OMSId integer. The ID of the Order Management System where the orders were placed.
Orderld integer. The ID of the order on the Order Management System.
Response

The response returns an array of 1 or more order objects.
l

“Side”: {
“Options”: [
“Buy”,
“sell”,
“Short”,
“Unknown”
]
}I
“OrderId”: O,
“Price”: 0,
“Quantity”: O,
“DisplayQuantity”: 0,
“Instrument”: O,
“Account”: 0,
“OrderType”: {
“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”
]
}I
“ClientOrderId”: O,
“OrderState”: {
“Options”: [
“Unknown”,
“Working”,
Code continued on page 92

91

GetOrderHistoryByOrderld

92

Code continued from page 91

“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”
]
}!
“ReceiveTime”: O,
“ReceiveTimeTicks”: O,
“OrigQuantity”: 0,
“QuantityExecuted”: O,
“AvgPrice”: O,
“CounterPartyId”: O,
“ChangeReason”: {
“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled NoMoreMarket”,
“SystemCanceled BelowMinimum”,
“NoChange”,
“UserModified”
]
}!
“OrigOrderId”: O,
“OrigClOrdIid”: O,
“EnteredBy”: O,
“IsQuote”: false,
“InsideAsk”: O,
“InsideAskSize”: 0,
“InsideBid”: O,
“InsideBidSize”: 0,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,

“OMSId”: 0,

Where:

String Value

Side string. One of:
0 Buy
1 Sell
2 Short (reserved for future use)
3 Unknown (error condition)

Orderld long integer. The ID of this order.

Price real. Price of the order.

Quantity real. Quantity of the order.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.
To display a DisplayQuantity value, an order must be a Limit order with a reserve.
See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument integer. The ID of the instrument being ordered.

Table continued on page 93

Table continued from page 92

GetOrderHistoryByOrderid

Account

integer. The ID of the account ordering the instrument.

OrderType

string. One of:

Unknown

Market

Limit

StopMarket
StopLimit
TrailingStopMarket
TrailingStopLimit
BlockTrade

See “Order Types” on page 7.

ClientOrderld

long integer. A user-assigned ID for the order (like a purchase-order number
assigned by a company). ClientOrderld defaults to 0.

OrderState

string. One of:

Unknown
Working
Rejected
Canceled
Expired
FullyExecuted

An open order will probably not yet be fully executed.

ReceiveTime

long integer. The time at which the system received the quote, in POSIX format.
See “Time- and Date-Stamp Formats” on page 8.

ReceiveTimeTicks

long integer. The time stamp of the received quote in Microsoft Ticks format. See
“Time— and Date-Stamp Formats” on page 8.

OrigQuantity

real. If the order has been changed, this value shows the original quantity.

QuantityExecuted

real. This value states the quantity that was executed in the order. It may be the
same as the quantity of the order; it may be different.

AvgPrice

real. Not currently used.

CounterPartyld

long integer. Shows 0.

ChangeReason

string. If the order has been changed, this value shows the reason. One of:

Unknown

NewlnputAccepted
NewlnputRejected

OtherRejected

Expired

Trade
SystemCanceled_NoMoreMarket
SystemCanceled_BelowMinimum
NoChange

UserModified

OrigOrderld

integer. If the order has been changed, shows the original order ID.

OrigClOrdId

long integer. If the order has been changed, shows the original client order ID, a
value that the client can create (much like a purchase order).

EnteredBy

integer. The ID of the user who entered the order in this account.

Table continued on page 94

93

GetOrderHistoryByOrderld

94

Table continued from page 93

See Also

IsQuote Boolean. If this order is a quote (rather than an order), returns true, otherwise
false. Default is false.

InsideAsk real. Best Ask price available at time of entry (generally available to market
makers).

InsideAskSize real. Quantity available at the best inside ask price (generally available to market
makers).

InsideBid real. Best Bid price available at time of entry (generally available to market

makers).

IndisdeBidSize

real. Quantity available at the best inside Bid price (generally available to market
makers)..

LastTradePrice

real. The price at which the instrument last traded.

RejectReason

string. If the order was rejected, this string value holds the reason.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
trade for both. Otherwise false.
OMSId integer. The ID of the Order Management System on which the order was

created.

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOpenQuotes,
GetOrderHistory, GetOrdersHistory, GetOrderStatus, ModifyOrder, SendOrder

GetOrdersHistory

Retrieves a history of multiple orders (hence, GetOrdersHistory with plural Orders) for the
specified account, order ID, user, instrument, or time stamp, starting at index i, where i is an

integer identifying a specific order in reverse order; that is, the most recent order has an index of 0.
“Depth” is the count of trades to report backwards from StartIndex. All values in the call other

than OMSId are optional.

The owner of the trading venue determines how long to retain order history before archiving.

Note: In this call, “Depth” refers not to the depth of the order book, but to the count of trades to report.

Request

All values other than OMSId are optional.

{

Where:

String

0,

“AccountId”: 0,
“ClientOrderId”: O,
“OriginalOrderId”: O,
“OriginalClientOrderId”: O,
“UserId”: 0O,
“InstrumentId”: O,
“StartTimestamp”: O,
“EndTimestamp”: 0,

0,

“StartIndex”: O,

Value

omsid

Integer. The ID of the Order Management System on which the orders took
place. Required. If no other values are specified, returns the orders associated
with the default account for the logged-in user on this Order Management

System.

Accountld

Integer. The account ID that made the trades. The logged-in user must be
associated with this account, although other users also can be associated with
the account. If no account ID is supplied, the system assumes the default account

for the logged-in user.

ClientOrderld

long integer. A user-assigned ID for the order (like a purchase-order number
assigned by a company). ClientOrderld defaults to 0.

OriginalOrderld

integer. The original ID of the order. If specified, the call returns changed orders
associated with this order ID.

Userld

integer. The ID of the user whose account orders will be returned. If not
specified, the call returns the orders of the logged-in user.

Instrumentld

long integer. The ID of the instrument named in the order. If not specified, the
call returns orders for all instruments for this account.

Table continued on page 96

95

GetOrdersHistory

Table continued from page 95

StartTimestamp

long integer. Date and time at which to begin the orders history, in POSIX
format, and UTC time zone. If not specified, reverts to the start date of this
account on the trading venue. See “Time— and Date-Stamp Formats” on page
8.

EndTimestamp

long integer. Date and time at which to end the orders report, in POSIX format,
and UTC time zone. If not specified, uses the current time. See “Time— and Date-
Stamp Formats” on page 8.

Depth

integer. In this case, the count of orders to return, counting from the Startindex.
If not specified, returns all orders between BeginTimeStamp and EndTimeStamp,
beginning at StartIndex and working backwards.

Startindex

Response

integer. The starting index into the order history, from 0 (the most recent trade)
and moving backwards in time. If not specified, defaults to 0.

The response returns an array of order objects.

[

Code continued on page 97

96

“Side”: |

]
}I

“Options”: [

“Buy”,
“Sell”,
“Short”,
“Unknown”

“OrderId”: O,
“Price”: 0,
“Quantity”: O,
“DisplayQuantity”: 0,
“Instrument”: O,
“Account”: 0,
“OrderType”: {

]
}I

“Options”: [

“Unknown”,

“Market”,

“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

“ClientOrderId”: O,
“OrderState”: {

]
}I

“Options”: [

“Unknown”,
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”

“ReceiveTime”: O,
“ReceiveTimeTicks”: O,
“OrigQuantity”: 0,
“QuantityExecuted”: O,
“AvgPrice”: 0,
“CounterPartyId”: O,
“ChangeReason”: {

Code continued from page 96

Where:

String

“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,

“Trade”,

“SystemCanceled NoMoreMarket”,
“SystemCanceled BelowMinimum”,

“NoChange”,
“UserModified”
]

}I
“OrigOrderId”: O,
“0rigClordid”: O,
“EnteredBy”: O,
“IsQuote”: false,
“InsideAsk”: O,
“InsideAskSize”: 0,
“InsideBid”: O,
“InsideBidSize”: 0,
“LastTradePrice”: O,
“RejectReason”: “7,
“IsLockedIn”: false,
“OMSId”: 0,

Value

GetOrdersHistory

Side

string. One of:

0 Buy

1 Sell

2 Short (reserved for future use)
3 Unknown (error condition)

Orderld

long integer. The ID of this order.

Price

real. The unit price of the order.

Quantity

real. The quantity of the order.

DisplayQuantity

real. The quantity available to buy or sell that is publicly displayed to the market.
To display a DisplayQuantity value, an order must be a Limit order with a reserve.
See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument

integer. The ID of the instrument being ordered.

Account

integer. The ID of the account ordering the instrument.

OrderType

string. One of:

Unknown

Market

Limit

StopMarket
StopLimit
TrailingStopMarket
TrailingStopLimit
BlockTrade

See “Order Types” on page 7.

Table continued on page 98

97

GetOrdersHistory

Table continued from page 97

ClientOrderld long integer. A user-assigned ID for the order (like a purchase-order number
assigned by a company). ClientOrderld defaults to 0.

OrderState string. One of:

Unknown
Working
Rejected
Canceled
Expired
FullyExecuted

An open order will not be fully executed.

ReceiveTime long integer. The time and date that the order was received, in POSIX format
and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

ReceiveTimeTicks long integer. Identifies the time and date that the order was received in Microsoft
ticks format, and UTC time zone. See “Time— and Date-Stamp Formats” on page
8.

OrigQuantity real. The original quantity in the order (may be different from the amount
executed).

QuantityExecuted real. This value states the quantity that was executed in the order (may be

different from Quantity or OrigQuantity.

AvgPrice real. Not currently used.

CounterPartyld long integer. Shows 0.

ChangeReason string. If the order has been changed, this value shows the reason. One of:
Unknown

NewlnputAccepted
NewlnputRejected

OtherRejected

Expired

Trade
SystemCanceled_NoMoreMarket
SystemCanceled_BelowMinimum

NoChange
UserModified
OrigOrderld integer. If the order has been changed, shows the original order ID.
OrigClOrdid long integer. If the order has been changed, shows the original client order ID, a

value that the client can create (much like a purchase order).

EnteredBy integer. The ID of the user who entered the order in this account.

IsQuote Boolean. If this order is a quote (rather than an order), returns true, otherwise
false. Default is false.

InsideAsk real. Best Ask price available at time of entry (generally available to market
makers).

InsideAskSize real. Quantity available at the best inside ask price (generally available to market
makers).

InsideBid real. Best Bid price available at time of entry (generally available to market
makers).

Table continued on page 99

98

Table continued from page 98

See Also

GetOrdersHistory

IndisdeBidSize

real. Quantity available at the best inside Bid price (generally available to market
makers)..

LastTradePrice

real. The price at which the instrument last traded.

RejectReason

string. If the order was rejected, this string value holds the reason.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
trade for both. Otherwise false.
OMSId integer. The ID of the Order Management System on which the order was

created.

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOpenQuotes,
GetOrderHistory, GetOrderHistoryByOrderld, GetOrderStatus, ModifyOrder, SendOrder

99

GetOrdersHistory

100

GetOrderStatus

Retrieves the status information for a single order.

Request

“OoMSId”: 0,
“AccountId”: O,
“OrderId”: O,

Where:
String Value
OMSId Integer. The ID of the Order Management System on which the order was placed.
Accountld integer. The ID of the account under which the order was placed.
Orderld integer. The ID of the order whose status will be returned.

Response

The response returns a single order object.

{
“Side”: {
“Options”: [
“Buy”,
“sell”,
“Short”,
“Unknown”
]
}I
“OrderId”: 0O,
“Price”: 0,
“Quantity”: O,
“DisplayQuantity”: 0,
“Instrument”: O,
“Account”: 0,
“OrderType”: {
“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”
]
}I
“ClientOrderId”: O,
“OrderState”: {
“Options”: [
“Unknown”,
Code continued on page 102

101

GetOrderStatus

Code continued from page 101
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”
]
} 4
“ReceiveTime”: O,
“ReceiveTimeTicks”: O,
“OrigQuantity”: 0,
“QuantityExecuted”: O,
“AvgPrice”: 0,
“CounterPartyId”: O,
“ChangeReason”: {
“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled NoMoreMarket”,
“SystemCanceled BelowMinimum”,
“NoChange”,
“UserModified”
]
} 4
“OrigOrderId”: O,
“OrigClOrdIid”: 0,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: O,
“InsideAskSize”: 0,
“InsideBid”: O,
“InsideBidSize”: 0,
“LastTradePrice”: O,
“RejectReason”: “7,
“IsLockedIn”: false,

“oMsId”: 0,
}
Where:
String Value
Side string. The side of this order. One of:
0 Buy
1 Sell
2 Short (reserved for future use)
3 Unknown (error condition)
Orderld long integer. The ID of the order. The response echoes the order ID from the
request.
Price real. The price at which the order was placed.
Quantity real. The quantity of the instrument being ordered.
DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.
To display a DisplayQuantity value, an order must be a Limit order with a reserve.
See “Display Quantity” on page 8, and “Order Types” on page 7.
Instrument integer. The ID of the instrument traded in the order.
Account integer. The ID of the account that placed the order.

Table continued on page 103

102

Table continued from page 102

GetOrderStatus

OrderType

string. One of:

Unknown

Market

Limit

StopMarket
StopLimit
TrailingStopMarket
TrailingStopLimit
BlockTrade

See “Order Types” on page 7.

ClientOrderID

long integer. A user-assigned ID for the order (like a purchase-order number
assigned by a company). ClientOrderld defaults to 0.

OrderState

string. One of:

0 Unknown

2 Working

3 Rejected

4 Canceled

5 Expired

6 FullyExecuted

ReceiveTime

long integer. The time and date that the order was received, in POSIX format
and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

ReceiveTimeTicks

long integer. Identifies the time and date that the order was received in Microsoft
ticks format, and UTC time zone. See “Time— and Date-Stamp Formats” on page
8.

OrigQuantity

real. The original quantity of the order. The actual amount traded may be
different.

QuantityExecuted

real. The quantity executed in this order. May be different from the amount
ordered (Quantity).

AvgPrice

real. Not currently used.

CounterPartyld

long integer. Shows 0.

ChangeReason

string. The reason that the order may have been changed from the original. One
of:

0 Unknown

1 NewlnputAccepted

2 NewlnputRejected

3 OtherRejected

4 Expired

5 Trade

6 SystemCanceled_NoMoreMarket
7 SystemCanceled_BelowMinimum
8 NoChange

9 UserModified

OrigOrderID

integer. The ID of the original order, if it has been changed.

OrigClIOrld

long integer. If the order has been changed, shows the original client order ID, a
value that the client can create (much like a purchase order). The default value is
0.

EnteredBy

integer. The ID of the user who originally entered the order.

Table continued on page 104

103

GetOrderStatus

104

Table continued from page 103

See Also

IsQuote Boolean. Returns true if the order is a quote, else returns false. Default is false.
See “Quotes and Orders” on page 5.

InsideAsk real. Ask price among market makers.

InsideAskSize real. Ask quantity among market makers.

InsideBid real. Bid price among market makers.

InsideBidSize real. Bid quantity among market makers.

LastTradePrice real. The price at which the instrument traded immediately before this trade.

RejectReason

string. If the trade was rejected, this string holds the reason.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
trade for both. Otherwise false.
OMSId integer. ID of the Order Management System on which the trades being reported

on occurred.

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOpenQuotes,
GetOrderHistory, GetOrderHistoryByOrderld, GetOrdersHistory, ModifyOrder, SendOrder

GetProduct

No authentication required

Retrieves the details about a specific product on the trading venue. A product is an asset that is

tradable or paid out. See “Products and Instruments” on page 4 for more information about the

difference between these two items.

“oMsid”: 1,
“ProductId”: 1

Value

integer. The ID of the Order Management System that includes the product.

Request
Where:
String
OMSId
Productld
Response

Management System.

Unsuccessful response:

Where:

String

“OoMSId”: 0,
“ProductId”: O,
“Product”: “7,
“ProductFullName”: “”,
“ProductType”: {
“Options”: [

]
}7

“Unknown”,
“NationalCurrency”,
“CryptoCurrency”,
“Contract”

“DecimalPlaces”: 0,
“TickSize”: O,
“NoFees”: false,

Value

long integer. The ID of the product (often a currency) on the specified Order

omsid

integer. The ID of the Order Management System that offers the product.

Productld

long integer. The ID of the product.

105

GetProduct

106

Product

string. “Nickname” or shortened name of the product. For example, NZD (New
Zealand Dollar).

ProductFullName

string. Full and official name of the product. For example, New Zealand Dollar.

ProductType

string. The nature of the product. One of:
0 Unknown (an error condition)

1 NationalCurrency

2 CryptoCurrency

3 Contract

DecimalPlaces

integer. The number of decimal places in which the product is divided. For
example, US Dollars are divided into 100 units, or 2 decimal places. Other
products may be different. Burundi Francs use 0 decimal places and the Rial
Omani uses 3.

TickSize

integer. Minimum tradable quantity of the product. See also Getinstrument,
where this value is called Quantitylncrement. For example, with a US Dollar, the
minimal tradable quantity is $0.01.

NoFees

See Also

Boolean. Shows whether trading the product incurs fees. The default is false;
that is, if NoFees is false, fees will be incurred. If NoFees is true, no fees are
incurred.

GetAccountPositions, GetInstrument, GetInstruments, GetProducts

GetProducts

No authentication required

Returns an array of products available on the trading venue. A product is an asset that is

tradable or paid out. For more information about the difference between products and

instruments, see “Products and Instruments” on page 4.

{
“oMsSId”: 1,

}

Value

Request
Where:
String
OMSId
Response

integer. The ID of the Order Management System for which the array of available

products and currencies will be returned.

The response returns an array of objects, one object for each product available on the

Order Management System.

Where:

String

{

“OoMSId”: 0,

“ProductId”: O,

“Product”: “7,

“ProductFullName”: “”,

“ProductType”: {
“Options”: [

“Unknown”,

“NationalCurrency”,

“CryptoCurrency”,
“Contract”
]
}!
“DecimalPlaces”: 0,
“TickSize”: O,
“NoFees”: false,
}!

Value

omsid

integer. The ID of the Order Management System that offers the product.

Productld

long integer. The ID of the product.

107

GetProducts

108

See Also

Product

string. “Nickname” or shortened name of the product. For example, NZD (New
Zealand Dollar).

ProductFullName

string. Full and official name of the product. For example, New Zealand Dollar.

ProductType

string. The nature of the product. One of:
0 Unknown (an error condition)

1 NationalCurrency

2 CryptoCurrency

3 Contract

DecimalPlaces

integer. The number of decimal places in which the product is divided. For
example, US Dollars are divided into 100 units, or 2 decimal places. Other
products may be different. Burundi Francs use 0 decimal places and the Rial
Omani uses 3.

TickSize

integer. Minimum tradable quantity of the product. See also Getinstrument,
where this value is called Quantitylncrement. For example, with a US Dollar, the
minimal tradable quantity is $0.01.

NoFees

Boolean. Shows whether trading the product incurs fees. The default is false;
that is, if NoFees is false, fees will be incurred. If NoFees is true, no fees are
incurred.

GetAccountPositions, GetInstrument, GetInstruments, GetProduct

ModifyOrder

Reduces an order’s quantity without losing priority in the order book. An order’s quantity can
only be reduced. The other call that can modify an order — CancelReplaceOrder — resets order
book priority, but you can use it to increase an order.

Note: ModifyOrder does not surrender or reset order book priority.

Request

{
“oMSI1d”: O,
“OrderId”: 0,
“InstrumentId”: O,
“PreviousOrderRevision”: O,
“Quantity”: 0

}

Where:

String Value

OMSId integer. The ID of the Order Management System where the original order was
placed.

Orderld long integer. The ID of the order to be modified. The ID was supplied by the
server when the order was created.

Instrumentld integer. The ID of the instrument traded in the order.

PreviousOrderRevision integer. The order revision number at the time you make the modification order.
This ensures that you have the latest order state at the time you make the
request.

Quantity real. The new quantity of the order. This value can only be reduced from a
previous quantity.

Response
{
“result”: false,
“errormsg”: “”
“errorcode”: 0,

“detail”: wo

115

ModifyOrder

116

See Also

Where:

String Value

result Boolean. The successful receipt of a modify request returns true; otherwise,
returns false. This is the acknowledgement of receipt of the request to modify, not
a confirmation that the modification has taken place. Monitor the modification with
GetOpenOrders or GetOrderHistory.

errormsg string. A successful receipt of a modify request returns null; the errormsg
parameter for an unsuccessful request returns one of the following messages:
Not Authorized (errorcode 20)
Invalid Request (errorcode 100)
Operation Failed (errorcode 101)
Server Error (errorcode 102)
Resource Not Found (errorcode 104)

errorcode integer. The receipt of a successful request to modify returns 0. An unsuccessful
request returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOrderHistory,
GetOrderHistoryByOrderld, GetOrdersHistory, GetOrderStatus, SendOrder

SendOrder

Creates an order. Anyone submitting an order should also subscribe to the various market data
and event feeds, or call GetOpenOrders or GetOrderStatus to monitor the status of the order. If
the order is not in a state to be executed, GetOpenOrders will not return it.

Request

“AccountId”: 5,
“ClientOrderId”: 99,
“Quantity”: 1,
“DisplayQuantity”: 0,
“UseDisplayQuantity”: true,
“LimitPrice”: 95,
“OrderIdOCO”: O,
“OrderType”: 2,
“PegPriceType”: 1,
“InstrumentId”: 1,
“TrailingAmount”: 1.0,
“LimitOffset”: 2.0,
“Side”: 0,
“StopPrice”: 96,
“TimeInForce”: 1,
“OMSId”: 1,

Where:

String Value

Accountld integer. The ID of the account placing the order.

ClientOrderld long integer. A user-assigned ID for the order (like a purchase-order number
assigned by a company). This ID is useful for recognizing future states related to
this order. ClientOrderld defaults to 0.

Quantity real. The quantity of the instrument being ordered.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.
To display a DisplayQuantity value, an order must be a Limit order with a reserve.

See “Display Quantity” on page 8.

UseDisplayQuantity Boolean. If you enter a Limit order with a reserve, you must set
UseDisplayQuantity to true. See “Display Quantity” on page 8 for more
information about how the system users the DisplayQuantity value.

LimitPrice real. The price at which to execute the order, if the order is a Limit order.

OrderldOCO integer. One Cancels the Other — If this order is order A, OrderldOCO refers to
the order ID of an order B (which is not the order being created by this call). If
order B executes, then order A created by this call is canceled. You can also set
up order B to watch order A in the same way, but that may require an update to
order B to make it watch this one, which could have implications for priority in the

order book. See CancelReplaceOrder and ModifyOrder.

Table continued on page 118

117

SendOrder

Table continued from page 117

OrderType integer. The type of this order, as expressed in integer format. See “Order Types”
on page 7 for an explanation of each type. One of:

1 Market

2 Limit

3 StopMarket

4 StopLimit

5 TrailingStopMarket
6 TrailingStopLimit

7 BlockTrade.

PegPriceType integer. When entering a stop/trailing order, set PegPrice Type to an integer that
corresponds to the type of price that pegs the stop:
1 Last
2 Bid
3 Ask
4 Midpoint
Instrumentld long integer. The ID of the instrument being traded in the order.
TrailingAmount real. The offset by which to trail the market in one of the trailing order types.

Set this to the current price of the market to ensure that the trailing offset is the
amount intended in a fast-moving market. See “Order Types” on page 7.

LimitOffset real. The amount by which a trailing limit order is offset from the activation price.
Side integer. The side of the trade represented by this order. One of:

0 Buy

1 Sell

2 Short (reserved for future use)
3 Unknown (error condition)

StopPrice real. The price at which to execute the order, if the order is a Stop order (either
buy or sell).
TimelnForce integer. The period during which the order is executable.

0 Unknown (error condition)
1 GTC good 'til canceled
3 10C immediate or cancelled

4 FOK fill or kill — fill the order immediately, or cancel it immediately

There may be other settings for TimelnForce depending on the trading venue.

OMSId integer. The ID of the Order Management System on which the order is being
placed.

Response

{
“status”:”Accepted”,
wonn

“errormsg”:
“OrderId”: 123 // Server order id

118

Where:

String

SendOrder

Value

status

string. If the order is accepted by the system, it returns 0.

0 Accepted
1 Rejected

errormsg

string. Any error message the server returns.

Orderld

See Also

long integer. The ID assigned to the order by the server. This allows you to track
the order.

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOrderHistory,
GetOrderHistoryByOrderld, GetOrdersHistory, GetOrderStatus, ModifyOrder

119

SendOrder

120

UpdateQuote

Updates an existing quote. Quoting is not enabled for the retail end user of the Coinext
software. Only registered market participants or market makers may quote. See
CancelReplaceOrder.

Note: UpdateQuote resets the quote’s priority in the order book.

Request
{
“OoMSId”: 0,
“AccountId”: O,
“InstrumentId”: O,
“BidQuoteId”: O,
“Bid”: 0,
“BidQty”: 0,
“AskQuoteId”: O,
“Ask”: O,
“AskQty”: 0,
}
Where:
String Value
OMSId integer. The ID of the Order Management System where the quote is located.
Accountld integer. The ID of the account whose quote will be updated.
Instrumentld long integer. The ID of the instrument whose quote is being updated.
BidQuoteld integer. The ID of the original bid quote being updated.
Bid real. The new currency amount of the bid quote.
BidQty real. The new quantity of the bid quote.
AskQuoteld integer. The ID of the original ask quote being updated.
Ask real. The new currency amount of the ask quote.
AskQty real. The new quantity of the ask quote.
Response
{
“BidQuoteId”: O,
“BidResult”: “{
“result”: true,
“errormsg”: “”

“errorcode”: O,

121

UpdateQuote

Where:

String

“detail”: w

“AskQuoteId”: O,

“AskResult”: “{
“result”: true,
“errormsg”:
“errorcode”: 0,
“detail”: “”,

wrr

Value

BidQuoteld

integer. The ID of the Bid quote being updated.

BidResult

string. Returns a response object for Bid.

AdkQuoteld

integer. The ID of the Ask quote being updated.

AskResult

string. Returns a response object for Ask.

Response objects for both BidResult and AskResult:

String

Value

result

Boolean. A successful receipt of the update returns true; and unsuccessful
receipt of the update (an error condition) returns false.

errormsg

string. A successful receipt of the update returns null; the errormsg string for an
unsuccessful receipt returns one of the following messages:

Not Authorized (errorcode 20)

Invalid Request (errorcode 100)

Operation Failed (errorcode 101)

Server Error (errorcode 102)

Resource Not Found (errorcode 104)

errorcode

integer. A successful receipt of the update returns 0. An unsuccessful receipt
returns one of the errorcodes shown in the errormsg list.

detail

See Also

string. Message text that the system may send. Usually null.

CancelAllOrders, CancelOrder, CancelQuote, CancelReplaceOrder, CreateQuote,
GetOpenOrders, GetOpenQuotes, ModifyOrder, SendOrder

122

Reports

CancelUserReport

You can generate or schedule a variety of reports through this API on demand. This call cancels
a scheduled report by its report ID.

Request
GetUserReportTickets can provide a list of GUIDs for scheduled reports.
{
“UserReportId”: guid-as-a-string //GUID not GUIDE
}
Where:
String Value
UserReport string. The GUID is a globally unique ID string that identifies the user report to
be cancelled. The Order Management System provides this ID when you create
a report.
Response

The response to CancelUserReport verifies that the call was received, not that the
user report has been canceled successfully. Individual event updates to the user show
cancellations. To verify that a report has been canceled, call GetUserReportTickets or
GetUserReportWriterResultRecords.

{

“result”: true,
“errormsg”: “”
“errorcode”: 0,

“detail”: w

Where:

String Value

result Boolean. A successful receipt of the cancellation returns true; and unsuccessful
receipt of the cancellation (an error condition) returns false.

errormsg string. A successful receipt of the cancellation returns null; the errormsg
parameter for an unsuccessful receipt returns one of the following messages:
Not Authorized (errorcode 20)

Invalid Request (errorcode 100)

Operation Failed (errorcode 101)

Server Error (errorcode 102)

Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the cancellation returns 0. An unsuccessful
receipt returns one of the errorcodes shown in the errormsg list.

Table continued on page 126
125

CancelUserReport

Table continued from page 125

detail string. Message text that the system may send. Usually null.

See Also

GetUserReportTickets, GetUserReportWriterResultRecords, ScheduleTradeActivityReport,
ScheduleTransactionActivityReport, ScheduleTreasuryActivityReport

126

GenerateTradeActivityReport

Creates an immediate report on historical trade activity on a specific Order Management System for
a list of accounts during a specified time interval.

The accounts listed in the request must all be associated with the logged-in user on the
specified OMS (the logged-in user may not be the only user of each account).

The Trade Activity Report is delivered as a comma-separated (CSV) file. For specific CSV
formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request
{
“accountIdList”: [
0 // one or more Account IDs
:| 4
“omsId”: O,
“startTime”: “0001-01-01T05:00:00Z".
“endTime”: “0001-01-01T05:00:00Z2",
}
Where:
String Value
accountldList integer array. A comma-delimited array of one ore more account IDs, each valid
on a single Order Management System for the authenticated user. The account
user may not be the only user of the account. See “Permissions” on page 4.
omsld integer. The ID of the Order Management System on which the array of account
IDs exist.
startTime string. startTime identifies the time and date for the historic beginning of the
trade activity report in ISO 8601 format and UTC time zone. “Time— and Date-
Stamp Formats” on page 8.
endTime string. endTime identifies the time and date for the historic end of the trade
activity report in ISO 8601 format and UTC time zone. See “Time— and Date-
Stamp Formats” on page 8.
Response

Similar objects are returned for Generate~Report and Schedule~Report calls. As a result, for
an on-demand Generate~Report call, some string-value pairs such as initinlRunTime may return the
current time and ReportFrequency will always return OnDemand because the report is only
generated once and on demand.

{

“RequestingUser”: O,

“OMSId”: 0,

“reportFlavor”: {
“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

Code continued on page 128

127

GenerateTradeActivityReport

Code continued from page 127

}7

“createTime”:
“initialRunTime”:
“intervalStartTime”:
“intervalEndTime”:

]

“0001-01-01T05:00:002",
“0001-01-01T05:00:002",
“0001-01-01T05:00:002",
“0001-01-01T05:00:002",

“RequestStatus”: {

}7

]

“Options”: [

“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,

“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

“ReportFrequency”: {

}7

“intervalDuration”:

]

“Options”: [

“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

0,

“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“accountIds”: [
0
] 4
}
Where:
String Value

RequestingUser

integer. The User ID of the person requesting the trade activity report. This

part of the response.

omsid

integer. The ID of the Order Management System on which the trade activity
report will be run.

reportFlavor

string. The type of report to be generated. One of:

TradeActivity
Transaction

Treasury

The reportFlavor string confirms the nature of the call.

createTime

Formats” on page 8.

initialRunTime

string. The time and date at which the trade activity report was first run,
in ISO 8601 format and the UTC time zone. Returns the current time for a
Generate~Report call. See “Time— and Date-Stamp Formats” on page 8.

intervalStartTime

“Time— and Date-Stamp Formats” on page 8.

128 Table continued on page 128

confirms the ID of the authenticated user who made the request by returning it as

string. The time and date on which the request for the trade activity report was
made, in ISO 8601 format and the UTC time zone. See “Time— and Date-Stamp

string. The start of the period that the report will cover, in ISO 8601 format. See

Table contnued from page 128

GenerateTradeActivityReport

intervalEndTime

string. The end of the period that the report will cover, in ISO 8601 format. See
“Time— and Date-Stamp Formats” on page 8.

requestStatus

string. The status of the request for the trade activity report. A Generate~Report
request will always return Submitted. See “Request Status” on page 10. Each
request returns one of:

Submitted

Validating

Scheduled

InProgress

Completed

Aborting

Aborted
UserCancelled
SysRetired
UserCancelledPending

ReportFrequency

string. When the report runs. For a Generate~Report call, this is always
OnDemand.

OnDemand
Hourly
Daily
Weekly
Monthly

Annually

intervalDuration

long integer. The period that the report covers relative to the run date, expressed
in Microsoft ticks format. The Generate~Report call requires a start time and

an end time. The Coinext software calculates the difference between them

as intervalDuration. See ““Time— and Date-Stamp Formats” on page 8. For
example, say that you specify a 90-day start-date-to-end-date window for a
report. The intervalDuration value returns a value equivalent to 90 days. If you
have called Generate~Report, that value simply confirms the length of time that
the on-demand report covers.

Requestld

string. The ID of the original request. Request IDs are long strings unique within
the Order Management Systsem.

lastinstanceld

string. For scheduled reports, the report ID of the most recent previously run
report. Will be null for a Generate~Report call, because generated reports are
on-demand.

accountld

See Also

integer array. A comma-delimited array of account IDs whose trades are
reported in the trade activity report.

GenerateTransactionActivityReport, GenerateTreasuryActivityReport,
GetUserReportTickets, GetUserReportWriterResultRecords, ScheduleTradeActivityReport,
ScheduleTransactionActivityReport, ScheduleTreasuryActivityReport

129

GenerateTradeActivityReport

130

GenerateTransactionActivityReport

Generates an immediate report on account transaction activity for a list of accounts under a single
Order Management System during a specified time. A logged-in and authenticated user can only
generate a transaction activity report for accounts associated with the user. There can be multiple
users associated with an account however; see “Permissions” on page 4.

The Transaction Activity Report is delivered as a comma-separated (CSV) file. For specific CSV
formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request
{
“accountIdList”: [
0
:| 4
“omsId”: O,
“startTime”: “0001-01-01T05:00:00z2",
“endTime”: “0001-01-01T05:00:002",
}
Where:
String Value
accountldList integer array. A comma-deliminted array of one ore more account IDs, each valid
on the same Order Management System on which the user is authenticated.
omsld integer. The ID of the Order Management System on which the array of account
IDs exist.
startTime string. startTime identifies the time and date for the beginning of the transaction
activity report, in ISO 8601 format. See “Time— and Date-Stamp Formats” on
page 8.
endTime string. endTime identifies the time and date for the end of the transaction activity
report, in ISO 8601 format. See “Time— and Date-Stamp Formats” on page 8.
Response

Similar objects are returned for Generate~Report and Schedule~Report calls. As a result, for
an on-demand Generate~Report call, some string-value pairs such as initinlRunTime may return the
current time and ReportFrequency will always return OnDemand because the report is only
generated once and on demand.

{

“RequestingUser”: O,

“OMSId”: 0,

“reportFlavor”: {
“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

]
}I

Code continued on page 132

131

GenerateTransactionActivityReport

Code continued from page 131

“createTime”: “0001-01-01T05:00:00z2",
“initialRunTime”: “0001-01-01T05:00:00Z",
“intervalStartTime”: “0001-01-01T05:00:00z2",
“intervalEndTime”: “0001-01-01T05:00:00Z",
“RequestStatus”: {

}7

]

“Options”: [

“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,

“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

“ReportFrequency”: {

}7

]

“Options”: [

“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

“intervalDuration”: O,

“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“accountIds”: [

] 4

Where:

String

0

Value

RequestingUser

part of the response..

omsid

integer. The ID of the Order Management System on which the transaction
activity report will be run.

reportFlavor

string. The type of report to be generated. One of:

TradeActivity
Transaction

Treasury

The reportFlavor string confirms the nature of the call.

createTime

Formats” on page 8.

initialRunTime

string. The time and date at which the trade activity report was first run,
in ISO 8601 format and the UTC time zone. Returns the current time for a

Generate~Report call. See “Time— and Date-Stamp Formats” on page 8.

intervalStartTime

“Time— and Date-Stamp Formats” on page 8.

1 32 Table continued on page 132

integer. The User ID of the person requesting the transaction activity report. This
confirms the ID of the authenticated user who made the request by returning it as

string. The time and date on which the request for the trade activity report was
made, in ISO 8601 format and the UTC time zone. See “Time— and Date-Stamp

string. The start of the period that the report will cover, in ISO 8601 format. See

GenerateTransactionActivityReport

Table continued from page 132

intervalEndTime string. The end of the period that the report will cover, in ISO 8601 format. See
“Time— and Date-Stamp Formats” on page 8.

requestStatus string. The status of the request for the trade activity report. A Generate~Report
request will always return Submitted. See “Request Status” on page 10. Each
request returns one of:

Submitted

Validating

Scheduled

InProgress

Completed

Aborting

Aborted
UserCancelled
SysRetired
UserCancelledPending

ReportFrequency string. When the report runs. For a Generate~Report call, this is always
OnDemand.

OnDemand
Hourly
Daily
Weekly
Monthly

Annually

intervalDuration long integer. The period that the report covers relative to the run date, expressed
in Microsoft ticks format. The Generate~Report call requires a start time and

an end time. The Coinext software calculates the difference between them

as intervalDuration. See “Time— and Date-Stamp Formats” on page 8. For
example, say that you specify a 90-day start-date-to-end-date window for a
report. The intervalDuration value returns a value equivalent to 90 days. If you
have called Generate~Report, that value simply confirms the length of time that
the on-demand report covers.

Requestld string. The ID of the original request. Request IDs are long strings unique within
the Order Management Systsem.

lastinstanceld string. For scheduled reports, the report ID of the most recent previously run
report. Will be null for a Generate~Report call, because generated reports are
on-demand.

accountlds integer array. A comma-delimited array of account IDs whose trades are

reported in the trade activity report.

See Also

GenerateTradeActivityReport, GenerateTreasuryActivityReport,
GetUserReportTickets, GetUserReportWriterResultRecords, ScheduleTradeActivityReport,
ScheduleTransactionActivityReport, ScheduleTreasuryActivityReport

133

GenerateTransactionActivityReport

134

GenerateTreasuryActivityReport

Generates an immediate report on all company treasury activities related to the trading venue
— withdrawals, transfers, and funds movements unrelated to trading — over a specified period.
A logged-in and authenticated user can only generate a transaction activity report for accounts
associated with the user. There can be multiple users associated with an account; see
“Permissions” on page 4.

The Trade Activity Report is delivered as a comma-separated (CSV) file. For specific CSV
formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request
{
“accountIdList”: [
0
:| 4
“omsId”: O,
“startTime”: “0001-01-01T05:00:00z2",
“endTime”: “0001-01-01T05:00:002",
}
Where:
String Value
accountldList integer array. A comma-delimited array of one ore more account IDs, each valid
on a single Order Management System for the authenticated user. The account
user may not be the only user of the account. See “Permissions” on page 4.
omsld integer. The ID of the Order Management System on which the array of account
IDs exist.
startTime string. startTime identifies the time and date for the historic beginning of the
trade activity report in ISO 8601 format and UTC time zone. See “Time- and
Date-Stamp Formats” on page 8.
endTime string. endTime identifies the time and date for the historic end of the trade
activity report in ISO 8601 format and UTC time zone. See “Time— and Date-
Stamp Formats” on page 8.
Response

Similar objects are returned for Generate~Report and Schedule~Report calls. As a result, for
an on-demand Generate~Report call, some string-value pairs such as initinlRunTime may return the
current time and ReportFrequency will always return OnDemand because the report is only
generated once and on demand.

{

“OMSId”: 0,

“reportFlavor”: {
“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

Code continued on page 136

135

GenerateTreasuryActivityReport

Code continued from page 135
]
} 4

“createTime”:
“initialRunTime”:
“intervalStartTime”:
“intervalEndTime”:

“0001-01-01T05:00:002",
“0001-01-01T05:00:002",
“0001-01-01T05:00:002",
“0001-01-01T05:00:002",

“RequestStatus”: {
“Options”: [

]
}7

“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,

“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

“ReportFrequency”: {
“Options”: [

]
}7

“intervalDuration”:

“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

0,

“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“accountIds”: [
0
] 4
}
Where:
String Value

RequestingUser

part of the response.

omsid

integer. The ID of the Order Management System on which the transaction
activity report will be run.

reportFlavor

string. The type of report to be generated. One of:

TradeActivity
Transaction

Treasury

The reportFlavor string confirms the nature of the call.

createTime

Formats” on page 8.

initialRunTime

string. The time and date at which the trade activity report was first run,
in ISO 8601 format and the UTC time zone. Returns the current time for a

Generate~Report call. See “Time— and Date-Stamp Formats” on page 8.

intervalStartTime

“Time— and Date-Stamp Formats” on page 8.

1 36 Table continued on page 137

integer. The User ID of the person requesting the treasury activity report. This
confirms the ID of the authenticated user who made the request by returning it as

string. The time and date on which the request for the trade activity report was
made, in ISO 8601 format and the UTC time zone. See “Time— and Date-Stamp

string. The start of the period that the report will cover, in ISO 8601 format. See

Table continued from page 136

GenerateTreasuryActivityReport

intervalEndTime

string. The end of the period that the report will cover, in ISO 8601 format. See
“Time— and Date-Stamp Formats” on page 8.

requestStatus

string. The status of the request for the trade activity report. A Generate~Report
request will always return Submitted. See “Request Status” on page 10. Each
request returns one of:

Submitted

Validating

Scheduled
InProgress
Completed

Aborting

Aborted
UserCancelled
SysRetired
UserCancelledPendin

ReportFrequency

string. When the report runs. For a Generate~Report call, this is always
OnDemand.

OnDemand
Hourly
Daily
Weekly
Monthly

Annually

intervalDuration

long integer. The period that the report covers relative to the run date, expressed
in Microsoft ticks format. The Generate~Report call requires a start time and

an end time. The Coinext software calculates the difference between them

as intervalDuration. See “Time— and Date-Stamp Formats” on page 8. For
example, say that you specify a 90-day start-date-to-end-date window for a
report. The intervalDuration value returns a value equivalent to 90 days. If you
have called Generate~Report, that value simply confirms the length of time that
the on-demand report covers.

Requestld

string. The ID of the original request. Request IDs are long strings unique within
the Order Management Systsem.

lastinstanceld

string. For scheduled reports, the report ID of the most recent previously run
report. Will be null for a Generate~Report call, because generated reports are
on-demand.

accountlds

See Also

integer array. A comma-delimited array of account IDs whose trades are
reported in the trade activity report.

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GetUserReportTickets, ScheduleTradeActivityReport, GenerateTreasuryActivityReport, and
ScheduleTreasuryActivityReport.

137

GenerateTreasuryActivityReport

138

GetUserReportTickets

Returns an array of user report tickets for a specific user ID. A user report ticket identifies a
report requested or subscribed to by a user. Reports can run once or periodically.

Request

“UserId”: 1

Where:
String Value
Userld integer. The ID of the user whose user report tickets will be returned.

Response

The response returns an array of tickets, each ticket representing a report.

[

“RequestingUser”: O,
“OMSId”: 0,
“reportFlavor”: {
“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”
}I
“createTime”: “0001-01-01T05:00:002",
“initialRunTime”: “0001-01-01T05:00:002",
“intervalStartTime”: “0001-01-01T05:00:00zZ",
“intervalEndTime”: “0001-01-01T05:00:002",
“RequestStatus”: {
“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”
]
}I
“ReportFrequency”: {
“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,

“Annually”
Code continued on page 140 y

139

GetUserReportTickets

Code continued from page 139

]
}7

“intervalDuration”: O,

“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==",

“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==",

“accountIds”: [

0
] 4
}I
}
]

Where:
String Value

RequestingUser

omsid

reportFlavor string. The type of report. One of:

TradeActivity
Transaction

Treasury

For more information, see “Report Types” on page 9.

createTime

integer. The User ID of the person requesting the report.

integer. The ID of the Order Management System on which the report was run.

string. The time and date on which the request for the report was made, in ISO
8601 format, and UTC time zone. See “Time— and Date-Stamp Formats” on page

8.

initialRunTime

string. The time and date at which the report was first run, in ISO 8601 format,
and UTC time zone. See ““Time— and Date-Stamp Formats” on page 8.

intervalStartTime

string. The start of the period that the report will cover, in ISO 8601 format, and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

intervalEndTime

string. The end of the period that the report will cover, in ISO 8601 format, and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

requestStatus
10. Each status returns one of:

Submitted

Validating

Scheduled

InProgress

Completed

Aborting

Aborted
UserCancelled
SysRetired
UserCancelledPending

ReportFrequency string. When the report runs.

OnDemand
Hourly
Daily
Weekly
Monthly
Annually

1 40 Table continued on page 141

string. The status of the request for the report. See “Request Status” on page

Table continued from page 140

GetUserReportTickets

intervalDuration

long integer. The period that the report looks backward relative to the run

date. The system calculates intervalDuration between intervalStartTime and
intervalEndTime and reports it in the form of Microsoft ticks. (See “Time— and
Date-Stamp Formats” on page 8.) For example, say that you specify a 90-day
start-date-to-end-date window for a report. The intervalDuration value returns a
value equivalent to 90 days and represents the backward-looking period of the
report. Say that you have set a weekly report to look back 90 days. When it runs
again in a week’s time, it again looks back 90 days — but now those 90 days are
offset by a week from the first report.

Requestld

string. The ID of the original request. Request IDs are long strings unique within
the Order Management System.

lastinstanceld

string. For scheduled reports, the report ID of the most recent previously run
report. Will be null for a Generate~Report call, because generated reports are
on-demand.

accountlds

See Also

integer array. A comma-delimited array of account IDs whose trades are
reported in the trade activity report.

GenerateTradeActivityReport,
GenerateTransactionActivityReport, GenerateTreasuryActivityReport,
GetUserReportWriterResultRecords, ScheduleTradeActivityReport,
ScheduleTreasuryActivityReport, ScheduleTreasuryActivityReport.

141

GetUserReportTickets

142

GetUserReportWriterResultRecords

The call returns an array of user report writer results. The results are the details of when
reports have been run, and the status of each report run. Did the report complete? Did the
report not start? The call requires no details. The call uses the default information from the

logged-in and authenticated user.

Request

Requires no details.

{

// no request details are needed

}

Response

“RequestingUser”: O,

“urtTicketId”:
“descriptorId”:

“AAAAAAAAAAAAAAAAAAAAAA==",
“AAAAAAAAAAAAAAAAAAAAAA==",

“resultStatus”: {

]
}I

“reportExecutionStartTime”:
“reportExecutionCompleteTime”:
“reportDescriptiveHeader”:

Where:

String

“Options”: [

“NotStarted”,
“NotComplete”,
“ErrorComplete”,
“SuccessComplete”,
“Cancelled”

*0001-01-01T05:00:00Z2",
*0001-01-01T05:00:00Z2",

w7
’

Value

RequestingUser

Integer. ID of the logged-in user requesting the report.

urtTicketld

string. An alphanumeric string containing the unique report ID of the report.

descriptorld

string. A GUID (globally-unique identifier) that describes the report separately
from the report ticket.

resultStatus

string. The status of each run of the reports. One of:

0 NotStarted

1 NotComplete

2 ErrorComplete

3 SuccessComplete
4 Cancelled

Table continued on page 744

143

GetUserReportWriterResultRecords

Table continued from page 143

reportExecutionStartTime | long integer. The time that the report writer began execution, in ISO 8601 format
and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

reportExecution- long integer. The time that the report writer completed the report, in ISO 8601
CompleteTime format and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

reportDescriptiveHeader | string. A string describing the report.

See Also

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GenerateTreasuryActivityReport, GetUserReportTickets, ScheduleTradeActivityReport,
ScheduleTreasuryActivityReport, ScheduleTreasuryActivityReport.

144

Request

ScheduleTradeActivityReport

Schedules a series of trade activity reports to run for a list of accounts on a single Order

Management System, starting at a specific date/time, and covering a specific time duration.

The reports will run periodically until canceled.
Trade Activity Reports are delivered in comma-separated-value (CSV) format. For specific CSV

formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Where:

String

“accountIdList”: [

0

:| 4
“omsId”:

0,

“pbeginTime”: “0001-01-01T05:00:00z2",
“intervalDuration”: O,
“frequency”: {

“Options”: [

“Hourly”,

“Daily”,

“Weekly”,

“Monthly”,

“Annual”

Value

AccountldList

integer array. Comma-separated integers; each element an account ID on the
Order Management System whose trade activity will be reported on. All accounts
must be from the same OMS and be associated with the logged-in user.

omsid

integer. The Order Management System on which the accounts named in the list
reside.

beginTime

string. The time from which the trade activities will be reported, in ISO 8601
format and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

intervalDuration

integer. The length of time prior to the run time that the report covers, in
Microsoft ticks format. For example, 90 days. Whenever the report runs, it looks

back 90 days.

frequency

string. How often the report will run. One of:

0 OnDemand
1 Hourly

2 Daily

3 Weekly

4 Monthly

5 Annually

145

ScheduleTradeActivityReport

Response

The response returns an object confirming the settings in the call.

{

“RequestingUser”: 0,

“oMSI1Id”: 0,

“reportFlavor”: {
“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

]
}7

“createTime”: “0001-01-01T05:00:00z2",
“initialRunTime”: “0001-01-01T05:00:00Z",
“intervalStartTime”: “0001-01-01T05:00:00z2",
“intervalEndTime”: “0001-01-01T05:00:00Z",
“RequestStatus”: {

“Options”: [

“Submitted”,

“Validating”,

“Scheduled”,

“InProgress”,

“Completed”,

“Aborting”,

“Aborted”,

“UserCancelled”,

“SysRetired”,

“UserCancelledPending”

]
}7

“ReportFrequency”: {

“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

]
}7

“intervalDuration”: O,

“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“accountIds”: [

0
] 4

Where:

String

Value

RequestingUser

integer. The User ID of the person requesting the trade activity report. This
confirms the ID of the authenticated user who made the request by returning it as

part of the response.

omsid

integer. The ID of the Order Management System on which the trade activity
report will be run.

reportFlavor

string. The type of report to be generated. One of:

TradeActivity
Transaction

Treasury

The reportFlavor string confirms the nature of the call.

146 Table continued on page 147

Table continued from page 146

See Also

ScheduleTradeActivityReport

createTime

string. The time and date on which the request for the trade activity report was
made, in ISO 8601 format and UTC time zone. See “Time— and Date-Stamp
Formats” on page 8.

initialRunTime

string. The time and date at which the trade activity report was first run, in ISO
8601 format and UTC time zone. See “Time— and Date-Stamp Formats” on page
8.

intervalStartTime

string. The start of the period that the report will cover, in ISO 8601 format and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

intervalEndTime

string. The end of the period that the report will cover, in ISO 8601 format and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

requestStatus

string. The status of the request for the trade activity report. See “Request
Status” on page 10. Each request returns one of:

Submitted

Validating

Scheduled

InProgress

Completed

Aborting

Aborted
UserCancelled
SysRetired
UserCancelledPending

ReportFrequency

string. When the report runs.

OnDemand
Hourly
Daily
Weekly
Monthly
Annually

intervalDuration

long integer. The period that the report covers relative to the run date. The call
specifies a start time and an intervalDuration in the form of Microsoft ticks. (See
“Time— and Date-Stamp Formats” on page 8.) For example, say that you
schedule a weekly report with a 90-day intervalDuration value. intervalDuration
represents the backward-looking period of the report. When the report runs again
in a week’s time, it again looks back 90 days — but now those 90 days are offset

by a week from the first report.

Requestld

string. The ID of the original request. Request IDs are long strings unique within
the Order Management Systsem.

lastinstanceld

string. For scheduled reports, the report ID of the most recent previously run
report.

accountlds

integer array. A comma-delimited array of account IDs whose trades are
reported in the trade activity report.

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GenerateTreasuryActivityReport, GetUserReportTickets, GetUserReportWriterResultRecords,
ScheduleTreasuryActivityReport, ScheduleTreasuryActivityReport.

147

148

ScheduleTransactionActivityReport

Schedules a series of transaction activity reports for a list of accounts on a single Order
Management System, starting at a specific date/time, and covering a specific time interval (90
days, for example). The reports will run periodically until canceled.

Transaction Activity Reports are delivered in comma-separated-value (CSV) format. For
specific CSV formatting information, see the APEX Extract CSV Data Dictionary, available
from Coinext.

Request

“accountIdList”: [
0
:| 4
“omsId”: O,
“pbeginTime”: “0001-01-01T05:00:00z2",
“intervalDuration”: O,
“frequency”: {
“Options”: [
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annual”

Where:

String Value

AccountldList integer array. Comma-separated integers; each element is an account ID whose
transaction activity will be reported on. All accounts must be from the same OMS.

OMSId integer. The Order Management System on which the accounts named in the list
reside.

beginTime string. The time from which the transaction activities will be reported, in ISO
8601 format and UTC time zone. See “Time— and Date-Stamp Formats” on page

8.

intervalDuration integer. The length of time prior to the run time that the report covers, in
Microsoft ticks format. For example, 90 days. Whenever the report runs, it looks

back 90 days.

frequency string. How often the report will run. One of:

0 OnDemand
1 Hourly

2 Daily

3 Weekly

4 Monthly

5 Annually

149

ScheduleTransactionActivityReport

Response

Similar objects are returned for Generate~Report and Schedule~Report calls.

{

Where:

String

“RequestingUser”: O,

“OMSId”: 0,

“reportFlavor”:
“Options”: [
“TradeActivity”,
“Transaction”,

“Treasury”

{

]
}I
“createTime”: “0001-01-01T05:00:002",
“initialRunTime”: “0001-01-01T05:00:002",
“intervalStartTime”: “0001-01-01T05:00:00zZ",
“intervalEndTime”: “0001-01-01T05:00:002",
“RequestStatus”: {
“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”
]
}I
“ReportFrequency”:
“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”
]

{

}I

“intervalDuration”: O,

“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“accountIds”: [
0
:| ’
Value

RequestingUser

integer. The User ID of the person requesting the transaction activity report. This
confirms the ID of the authenticated user who made the request by returning it as

part of the response.

omsid

integer. The ID of the Order Management System on which the transaction
activity report will be run.

reportFlavor

string. The type of report to be generated. One of:

TradeActivity
Transaction

Treasury

The reportFlavor string confirms the nature of the call.

Table continued on page 151

150

Table continued from page 150

ScheduleTransactionActivityReport

createTime

string. The time and date on which the request for the transaction activity report
was made, in ISO 8601 format and UTC time zone. See “Time— and Date-Stamp
Formats” on page 8.

initialRunTime

string. The time and date at which the transaction activity report was first run, in
ISO 8601 format and UTC time zone. See ““Time— and Date-Stamp Formats” on
page 8.

intervalStartTime

string. The start of the period that the report will cover, in ISO 8601 format and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

intervalEndTime

string. The end of the period that the report will cover, in ISO 8601 format and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

requestStatus

string. The status of the request for the transaction activity report. See “Request
Status” on page 10. Each request returns one of:

Submitted

Validating

Scheduled

InProgress

Completed

Aborting

Aborted
UserCancelled
SysRetired
UserCancelledPending

ReportFrequency

string. When the report runs.

OnDemand
Hourly
Daily
Weekly
Monthly
Annually

intervalDuration

long integer. The period that the report covers relative to the run date. The call
specifies a start time and an intervalDuration in the form of Microsoft ticks. (See
“Time— and Date-Stamp Formats” on page 8.) For example, say that you
schedule a weekly report with a 90-day intervalDuration value. intervalDuration
represents the backward-looking period of the report. When the report runs again
in a week’s time, it again looks back 90 days — but now those 90 days are offset

by a week from the first report.

Requestld

string. The ID of the original request. Request IDs are long strings unique within
the Order Management System.

lastinstanceld

string. For scheduled reports, the report ID of the most recent previously run
report.

accountlds

See Also

integer array. A comma-delimited array of account IDs whose trades are reported
in the trade activity report.

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GenerateTreasuryActivityReport, GetUserReportTickets, GetUserReportWriterResultRecords,
ScheduleTradeActivityReport, ScheduleTreasuryActivityReport.

151

152

Request

ScheduleTreasuryActivityReport

Schedules a series of treasury activity reports for a list of accounts on a single Order Management

System, starting at a specific date/time, and covering a specific time interval. The reports will run

periodically until canceled.
The Treasury Activity Report itself is delivered as a comma-separated-value (CSV) file. For
specific CSV formatting information, see the APEX Extract CSV Data Dictionary, available from

Coinext.

Where:

String

“accountIdList”: [

0

:| 4
“omsId”:

0,

“pbeginTime”: “0001-01-01T05:00:00z2",
“intervalDuration”: O,
“frequency”: {

“Options”: [

“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annual”

Value

AccountldList

integer array. Comma-separated integers; each element is an account ID whose
treasury activity will be reported on. All accounts must be from the same OMS.

omsid

integer. The Order Management System on which the accounts named in the list
reside.

beginTime

string. The time from which the treasury activities will be reported, in ISO 8601
format and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

intervalDuration

integer. The length of time prior to the run time that the report covers, in
Microsoft ticks format. For example, 90 days. Whenever the report runs, it looks

back 90 days.

frequency

string. How often the report will run. One of:

0 OnDemand
1 Hourly

2 Daily

3 Weekly

4 Monthly

5 Annually

153

ScheduleTreasuryActivityReport

Response

Similar objects are returned for Generate~Report and Schedule~Report calls.

{

Where:

String

“RequestingUser”: O,

“OMSId”: 0,

“reportFlavor”:
“Options”: [
“TradeActivity”,
“Transaction”,

“Treasury”

{

]
}I
“createTime”: “0001-01-01T05:00:002",
“initialRunTime”: “0001-01-01T05:00:002",
“intervalStartTime”: “0001-01-01T05:00:00zZ",
“intervalEndTime”: “0001-01-01T05:00:002",
“RequestStatus”: {
“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”
]
}I
“ReportFrequency”:
“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”
]

{

}I

“intervalDuration”: O,

“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==",
“accountIds”: [
0
:| ’
Value

RequestingUser

integer. The User ID of the person requesting the treasury activity report. This
confirms the ID of the authenticated user who made the request by returning it as

part of the response.

omsid

integer. The ID of the Order Management System on which the treasury activity
report will be run.

reportFlavor

string. The type of report to be generated. One of:

TradeActivity
Transaction

Treasury

The reportFlavor string confirms the nature of the call.

Table continued on page 155

154

Table continued from page 154

ScheduleTreasuryActivityReport

createTime

string. The time and date on which the request for the treasury activity report
was made, in ISO 8601 format and UTC time zone. See “Time— and Date-Stamp
Formats” on page 8.

initialRunTime

string. The time and date at which the treasury activity report was first run, in
ISO 8601 format and UTC time zone. See ““Time— and Date-Stamp Formats” on
page 8.

intervalStartTime

string. The start of the period that the report will cover, in ISO 8601 format and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

intervalEndTime

string. The end of the period that the report will cover, in ISO 8601 format and
UTC time zone. See “Time— and Date-Stamp Formats” on page 8.

requestStatus

string. The status of the request for the treasury activity report. See “Request
Status” on page 10. Each request returns one of:

Submitted

Validating

Scheduled

InProgress

Completed

Aborting

Aborted
UserCancelled
SysRetired
UserCancelledPending

ReportFrequency

string. When the report runs.

OnDemand
Hourly
Daily
Weekly
Monthly
Annually

intervalDuration

long integer. The period that the report covers relative to the run date. The call
specifies a start time and an intervalDuration in the form of Microsoft ticks. (See
“Time— and Date-Stamp Formats” on page 8.) For example, say that you
schedule a weekly report with a 90-day intervalDuration value. intervalDuration
represents the backward-looking period of the report. When the report runs again
in a week’s time, it again looks back 90 days — but now those 90 days are offset

by a week from the first report.

Requestld

string. The ID of the original request. Request IDs are long strings unique within
the Order Management System.

lastinstanceld

string. For scheduled reports, the report ID of the most recent previously run
report.

accountlds

See Also

integer array. A comma-delimited array of account IDs whose trades are reported
in the trade activity report.

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GenerateTreasuryActivityReport, GetUserReportTickets, GetUserReportWriterResultRecords,
ScheduleTradeActivityReport, ScheduleTransactionActivityReport.

155

156

Tickers and Feeds

GetL2Snapshot

No authentication required — trading venue operator may control access

Provides a current Level 2 snapshot of a specific instrument trading on an Order

Management System to a user-determined market depth. For more information on Level 1
and Level 2 information, see “Level 1 and Level 2 Market Information” on page 3.

The Level 2 snapshot allows the user to specify the level of market depth information on
either side of the bid and ask.

Note: Depth in this call is “depth of market,” the number of buyers and sellers at greater or lesser prices in
the order book for the instrument.
Request
{
“oMsId”: 1,
“InstrumentId”: 1,
“Depth”: 100
}
Where:
String Value
OMSId integer. The ID of the Order Management System where the instrument is
traded.
Instrumentld integer. The ID of the instrument that is the subject of the snapshot.
Depth integer. Depth of the market — the number of buyers and sellers at greater or
lesser prices in the order book for the instrument. Defaults to 100.
Response

The response is a single object for one specific instrument. The Level2UpdateEvent contains the same

data, but is sent by the OMS when trades occur. A user must subscribe to Level2UpdateEvents.

{

“MDUpdateID”:
“Accounts”: 0,
“ActionDateTime”:
“ActionType”: {

“Options”: [

“New”,
“Update”,
“Delete”

]
“LastTradePrice”:
“Orders”: 0,
“Price”: 0,
“ProductPairCode”:
“Quantity”: O,
“Side”: O,

0,

635872032000000000,

0,

0,

159

GetL2Snapshot

160

See Also

Where:
String Value
MDUpdatelD integer. Market Data Update ID. This sequential ID identifies the order in which
the update was created.
Accounts integer. The number of accounts that have orders at this price level.

ActionDateTime

string. ActionDate Time identifies the time and date that the snapshot was taken
or the event occurred, in POSIX format X 1000 (milliseconds since 1 January

1970). See “Time— and Date-Stamp Formats” on page 8.

ActionType string. L2 information provides price data. This value shows whether this data is
new, an update, or a deletion. One of:
New
Update
Delete

LastTradePrice real. The price at which the instrument was last traded.

Orders integer. The number of orders at this price point. Whether it is a Buy or Sell order
is shown by Side, below.

Price real. Bid or Ask price for the Quantity (see Quantity below).

ProductPairCode integer. ProductPairCode is the same number and used for the same purpose
as InstrumentID. The two are completely equivalent in value. Instrumentld 47 =
ProductPairCode 47.

Quantity real. Quantity available at a given Bid or Ask price (see Price above).

Side integer. One of:

0 Buy

1 Sell

2 Short (reserved for future use)
3 Unknown (error condition)

SubscribeLevell, SubscribeLevel2, UnsubscribeLevell, UnsubscribeLevel2

GetTickerHistory

No authentication required

Requests a ticker history (high, low, open, close, volume, bid, ask, ID) of a specific instrument
from a given date forward to the present. You will need to format the returned data per your

requirements.
Request
{
“InstrumentId”: 1,
“FromDate”: // POSIX-format date and time
}
Where:
String Value
Instrumentld long integer. The ID of a specific instrument. The Order Management System
and the default Account ID of the logged-in user are assumed.
FromDate long integer. Oldest date from which the ticker history will start, in POSIX format
and UTC time zone. The report moves toward the present from this point. See
“Time— and Date-Stamp Formats” on page 8.
Response

The response returns an array of arrays dating from the FromDate value of the request. The
data are returned oldest-date first. The data returned in the arrays are not labeled. For example,
a single returned array element might look like this:

[
1501604532000,
2792.73,
2667.95,
2687.01,
2700.81,
242.61340767,
0/

2871,
0
]

...and with comments applied to identify the data being returned (comments are not part
of the response):

[
1501604532000, // UTC Date/Time in milliseconds since 1/1/1970

2792.73, // High
2667.95, // Low

2687.01, // Open
2700.81, // Close
242.61340767,// Volume

0, // Inside bid price
2871, // Inside ask price

0 // Instrument ID

161

GetTickerHistory

See Also

SubscribeTicker, UnsubscribeTicker

162

GetTradesHistory

Retrieves a list of trades for the specified account, order ID, user, instrument, or starting and

ending time stamp. The returned list begins at start index i, where i is an integer identifying a

specific trade in reverse order; that is, the most recent trade has an index of 0. “Depth” is the count

of trades to report backwards from StartIndex.

» Older trades

EndTimeStamp StartTimeStamp

|
Trade 0

—— Depth =100

- - .
[| 1
Trade 200

Startindex = 50

Caution: You must coordinate Startindex, Depth, StartTimeStamp, and EndTimeStamp to retrieve the
historical information you need. As the diagram shows, it is possible to specify values (for example,
EndTimeStamp and Depth) that can exclude information you may want (the red areas).

The owner of the trading venue determines how long to retain order history before archiving.

Note: In this call, “Depth” refers not to the depth of the order book, but to the count of trades to report.

Request

All values in the call other than OMSId are optional.

Where:

String

“OMSId”: 0,
“AccountId”: 0,
“InstrumentId”: O,
“TradeId”: O,
“OrderId”: O,
“UserId”: O,
“StartTimestamp”: O,
“EndTimestamp”: 0,
“Depth”: 0,
“StartIndex”: O,
“ExecutionId”: O,

Value

OomMsid

Integer. The ID of the Order Management System on which the trades took
place. If no other values are specified, returns the trades associated with the
default account for the logged-in user on this Order Management System.

Table continued on page 164

163

GetTradesHistory

Table continued from 163

Accountld

Integer. The account ID that made the trades. The logged-in user must be
associated with this account, although other users also can be associated with
the account. If no account ID is supplied, the system assumes the default account
for the logged-in user.

Instrumentld

long integer. The ID of the instrument whose history is reported. If no instrument
ID is included, the system returns trades for all instruments associated with the
account and OMS.

Tradeld

integer. The ID of a specific trade. If specified, the call can return multiple states
for a single trade.

Orderld

integer. The ID of the order resulting in the trade. If specified, the call returns all
trades associated with the order.

Userld

integer. The ID of the logged-in user. If not specified, the call returns trades
associated with the users belonging to the default account for the logged-in user
of this OMS.

StartTimeStamp

long integer. The historical date and time at which to begin the trade report, in
POSIX format and UTC time zone. If not specified, reverts to the start date of this
account on the trading venue. See “Time— and Date-Stamp Formats” on page

8.

EndTimeStamp

long integer. Date at which to end the trade report, in POSIX format and UTC
time zone. If not specified, uses the current time. See ““Time— and Date-Stamp
Formats” on page 8.

Depth

integer. In this case, the count of trades to return, counting from the Startindex.
If not specified, returns all trades between BeginTimeStamp and EndTimeStamp,
beginning at Startindex.

Startindex

integer. The starting index into the history of trades, from 0 (the most recent
trade) and moving backwards in time. If not specified, defaults to 0.

Executionld

Response

164 Code continued on page 165

integer. The ID of the individual buy or sell execution. If not specified, returns all.

The response returns an array, one element for each trade.

[

“TradeTimeMS”: O,

0,

“FeeProductId”: 0,
“OrderOriginator”: O,
“OMSId”: 0,
“ExecutionId”: O,
“TradeId”: O,
“OrderId”: O,
“AccountId”: 0,
“SubAccountId”: O,
“ClientOrderId”: O,
“InstrumentId”: O,
“Side”: {
“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”

Code continued from 164

}7
“Quantity”: 0,

GetTradesHistory

“RemainingQuantity”: O,
“Price”: 0,
“Value”: 0,
“TradeTime”: O,
“CounterParty”: “”
“OrderTradeRevision”: O,
“Direction”: {
“Options”: [
“NoChange”,
“UpTick”,
“DownTick”
]
} 4
“IsBlockTrade”: false,
} ’
]
Where:
String Value
TradeTimeMS long integer. The time at which the trade took place, reported in Microsoft ticks
format and UTC time zone. See “Time— and Date-Stamp Formats” on page 8.
Fee real. The fee that applied to this trade, if any.
FeeProductld integer. The ID of the product in which the fee is denominated.
OrderOriginator integer. The ID of the user who entered the order on your side of the trade.
OMSId integer. The ID of the Order Management System on which the trade took place.
Executionld integer. The ID of your sell or buy side portion of the execution, individually.
Tradeld integer. The ID of the overall trade.
Orderld integer. The ID of the order that resulted in the trade.
Accountld integer. The ID of the account under which the trade was executed.
SubAccountld integer. Not currently used.

ClientOrderld

long integer. A user-assigned ID for the order (like a purchase-order number
assigned by a company). ClientOrderld defaults to 0.

Instrumentld

long integer. The ID of the instrument being traded.

Side

0 Buy
1 Sell

string. One of:

2 Short (reserved for future use)
3 Unknown (error condition)

Quantity

real. The quantity of the instrument being traded.

RemainingQuantity

real. Any quantity remaining in the order after this trade.

Table continued on page 166

165

GetTradesHistory

Table continued from 165

Price real. The unit price of the order.
Value real. The overall value of the trade — price X quantity.
TradeTime long integer. Time at which the trade took place, in POSIX format and UTC time
zone.
CounterParty long integer. Shows 0.
OrderTradeRevision integer. The ID of any trade revision that took place for the trade.
Direction string. Effect of this trade on the market. One of:
Nochange
UpTick
DownTick
IsBlockTrade Boolean. Returns frue if the trade was a reported trade; false otherwise.

See Also

GenerateTradeActivityReport, GetAccountTrades, ScheduleTradeActivityReport,
SubscribeTrades, UnsubscribeTrades

166

SubscribeAccountEvents

Subscribes the user to notifications about the status of account-level events: orders, trades, position

updates, deposits, and withdrawals for a specific account on the Order Management System (OMS).

The subscription reports all events associated with a given account; there is no filter at the call level

to subscribe to some events and not others.
Account event information is supplied in comma-separated-value (CSV) format. For specific CSV

formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request

Where:

String

{
“AccountId”: 1,
“OMSId”: 1

Value

Accountld

integer. The ID of the account for the logged-in user.

omsid

Response

Where:

String

integer. The ID of the Order Management System to which the account belongs.

{

“Subscribe”: true

}

Value

Subscribe

See The Events on page 168

Boolean. A successful subscription returns true; otherwise, false.

167

SubscribeAccountEvents

168

The Events

When you call SubscribeAccountEvents, you subscribe to the following list of events. The
Order Management System may supply them at irregular intervals; software must listen for these
events. The system sends each of these events in a message frame. See ““Message Frame” on

page 1.

AccountPositionEvent

Trigger: The balance in your account changes.

{

“OMSId”:4, //The OMSId. [Integer]
“AccountId”:4, // account id number. [Integer]
“ProductSymbol”:”BTC”,

//The Product Symbol for this balance message.
[String] “ProductId”:1,

//The Product Id for this balance message. [Integer]
“Amount”:10499.1,

//The total balance in the account for the specified product.
[Dec] “Hold”: 2.1,

//The total amount of the balance that is on hold. Your available

//balance for trading and withdraw is (Amount - Hold). [Decimal]
“PendingDeposits”:0,

//Total Deposits Pending for the specified product.
[Decimal] “PendingWithdraws”:0,

//Total Withdrawals Pending for the specified product.
[Decimal] “TotalDayDeposits”:0,

//The total 24-hour deposits for the specified product. UTC.
[Dec] “TotalDayWithdraws”:0

//The total 24-hour withdraws for the specified product. UTC [Dec]

CancelAllOrdersRejectEvent

Trigger: All orders for your account are rejected.

{
“OMSId”: 1, // OMS ID [Integer]
“AccountId”: 4, // ID of the account being tracked [Integer]
“InstrumentId”: O,

// ID of the instrument in the order [Long Integer]
“Status”: “Rejected”, // Accepted/Rejected [String]
“RejectReason”: “Instrument not found.”

// Reason for rejection [String]

CancelOrderRejectEvent

Trigger: Your order is canceled.

{
“oMSId”: 1, //OMS Id [Integer] Always 1
“AccountId”: 4, //Your Account ID. [Integer]
“OrderId”: 1,
//The Order ID from your Cancel request. [64 Bit Integer]

“OrderRevision”: O,
//The Revision of the Order, if any was found. [64 Bit
Integer] “OrderType”: “Unknown”, // See “Order Types” on page 7

“InstrumentId”: 1,
// The InstrumentId from your Cancel request. [Integer]

“Status”: “Rejected”, //Always “Rejected” [String]
“RejectReason”: “Order Not Found”
//A message describing the reason for the rejection. [String]

SubscribeAccountEvents

CancelReplaceOrderRejectEvent

Trigger: Your order is rejected even if a cancel-replace order was placed.

{
“OoMSId”: 1, // ID of the OMS [integer]
“AccountId”: 4, // ID of the account [integer]
“OrderId”: 9342, // The ID of the rejected order [integer]
“ClientOrderId”: 1234, // The client-supplied order ID [long integer]
“LimitPrice”: 99.1, // The limit price of the order.
“OrderIdOCO”: O,

// The ID of the other ordre to cancel if this is executed.
“OrderType”: “Limit”, // See “Order Types” on page 7.
“PegPriceType”: “Bid”, // Where to peg the stop/trailing
order. “OrderIdToReplace”: 9333,

// The ID of the order being cancelled and replaced.
“InstrumentId”: 1, // ID of the instrument traded in the
order. “ReferencePrice”: 99.1, // used internally.

“Quantity”: 1.0, // Quantity of the replacement order

“Side”: “Buy”, // Side of the order: Buy, Sell, Short (future)
“StopPrice”:0, // The price at which to execute the new order.
“TimeInForce”:”GTC”, // Period when new order can be executed.
“Status”:”Rejected”, // Status of the order - always “rejected”
“RejectReason”:”Order Not Found” // Reason the order was rejected.

MarketStateUpdate

Trigger: The market state is altered administratively.

{

“ExchangeId”:1, // Exchange Id [Integer]
“VenueAdapterId”:1, // Internal [Integer]
“WenueInstrumentId”:1, // Instrument Id on a specific venue
[Integer] “Action”:”ReOpen”,

// Market State Action [String] Values are

// “Pause”, “Resume”, “Halt”,
“ReOpen” “PreviousStatus”:”Stopped”,

// Previous Market Status for Instrument [String] Values are

// “Running”, “Paused”, “Stopped”,

“Starting” “NewStatus”:”Running”,
// Market Status for Instrument [String] Values are
// “Running”, “Paused”, “Stopped”, “Starting”

“ExchangeDateTime”:”72016-04-21T21:48:227Z"
// ISO 8601 format UTC time zone

NewOrderRejectEvent

Trigger: An order associated with your account is rejected.

{
“oMSId”: 1, //OMS Id [Integer] Always 1
“AccountId”: 4, //Your Account Id [Integer]
“ClientOrderId”: 1234, //Your Client Order Id [64 Bit Integer]
“Status”: “Rejected”, //Always “Rejected”
“RejectReason”: “No More Market”
//A message describing the reason for the reject.

OrderStateEvent

Trigger: The status changes for an order associated with your account.

{
“Side”:”Sell”,
// The side of your order. [String] Values are “Sell”,
// “Buy”, “Short”
“OrderId”: 9849, //The Server-Assigned Order Id. [64-bit Integer]

“Price”: 97, //The Price of your order. [Decimal]
Code continued on page 170

169

SubscribeAccountEvents

Code continued from page 169

OrderTradeEvent

“Quantity”:1,

// The Quantity (Remaining if partially or fully executed) of

// your order. [Decimall]
“Instrument”:1, // The InstrumentId your order is for.
[Integer] “Account”:4, // Your AccountId [Integer]
“OrderType”:”Limit”,

// The type of order. [String] Values are “Market”, “Limit”,

// “StopMarket”, “StopLimit”, “TrailingStopMarket”, and

// “TrailingStopLimit”
“ClientOrderId”:0, // Your client order id. [64-bit Integer]
“OrderState”:”Working”, // The current state of the order. [String]

// Values are “Working”,
// “Expired”
“ReceiveTime”:0,
“OrigQuantity”:1,

“Rejected”, “FullyExecuted”, “Canceled”,
// Timestamp in POSIX format

// The original quantity of your order. [Decimal]
“QuantityExecuted”:0, // The total executed quantity. [Decimall]
“AvgPrice”:0, // Avergage executed price. [Decimal]
“ChangeReason”:”NewInputAccepted”

The reason for the order state change. [String] Values are
“NewInputAccepted”, “NewInputRejected”, “OtherRejected”,
“Expired”, “Trade”, SystemCanceled BelowMinimum”,
“SystemCanceled NoMoreMarket”, “UserModified”

Trigger: An order associated with your account results in a trade.

{

“OMSId”:1,
“TradeId”:213,
“OrderId”:9848,
“AccountId”:4,
“ClientOrderId”:0,
“InstrumentId”:1,
“Side”:”Buy”,

//OMS Id [Integer]

/Trade Id [64-bit Integer]

//Order Id [64-bit Integer]

//Your Account Id [Integer]

//Your client order id. [64-bit Integer]
//Instrument Id [Integer]

//[String] Values are “Buy”, “Sell”, “Short” (future)
“Quantity”:0.01, //Quantity [Decimal]
“Price”:95, //Price [Decimall]
“Value”:0.95, //Value [Decimall]

“TradeTime”:635978008210426109,

// TimeStamp in Microsoft ticks
format “ContraAcctId”:3,

// The Counterparty of the trade.

// the clearing account. [Integer]
“OrderTradeRevision”:1, //Usually 1

The counterparty is always

PendingDepositUpdate

“Direction”:”NoChange” //”Uptick”, “Downtick”, “NoChange”
}
Trigger: Deposit pending on your account.
{
“AccountId”: 4, // Your account id number. [Integer]
“AssetId”: 1, // The ProductId of the pending deposit. [Integer]

See Also

“TotalPendingDepositValue”: 0.01
//The value of the pending deposit. [Decimal]
“Requires2FA”: false,
“TwoFAType”: “7,
“TwoFAToken”: “”,

SubscribeLevell, SubscribeLevel2, SubscribeTicker, SubscribeTrades,
UnsubscribeLevell, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

170

Subscribelevel1

No authentication required — trading venue operator may control access

Retrieves the latest Level 1 Ticker information and then subscribes the user to ongoing Level 1

market data event updates for one specific instrument. For more information about Level 1 and
Level 2, see “Level 1 and Level 2 Market Information” on page 3. The SubscribeLevell call
responds with the Level 1 response shown below. The OMS then periodically sends
LevelUpdateEvent information when best bid/best offer issues in the same format as this response,

until you send the UnsubscribeLevell call.

Request
You can identify the instrument with its ID or with its market symbol (string).
{
“oMSId”: 1,
“InstrumentId”: 0
}
Or
{
“oMSId”: 1,
“Symbol”: “BTCUSD”}
Where:
String Value
OMSId integer. The ID of the Order Management System on which the instrument
trades.
Instrumentld integer. The ID of the instrument you're tracking. Conditionally optional.
Symbol string. The symbol of the instrument you're tracking. Conditionally optional.
Response

The SubscribeLevell response and Level1UpdateEvent both provide the same information.

{
“OMSId”: 1,
“InstrumentId”: 1,
“BestBid”: 0.00,
“BestOffer”: 0.00,
“LastTradedPx”: 0.00,
“LastTradedQty”: 0.00,

“LastTradeTime”: 635872032000000000,

“SessionOpen”: 0.00,
“SessionHigh”: 0.00,
“SessionLow”: 0.00,
“SessionClose”: 0.00,
“Volume”: 0.00,
“CurrentDayVolume”: 0.00,
“CurrentDayNumTrades”: 0,
“CurrentDayPxChange”: 0.0,
“Rolling24HrVolume”: 0.0,
“Rolling24NumTrades”: 0.0,

“Rolling24HrPxChange”: 0.0,
Code continued on page 172

171

SubscribeLevel1

172

Code continued from page 171

“TimeStamp”: 635872032000000000,

}

Where:
String Value
OMSId integer. The ID of the Order Management System on which the instrument

trades.

Instrumentld

integer. The ID of the instrument being tracked.

BestBid real. The current best bid for the instrument.
BestOffer real. The current best offer for the instrument.
LastTradedPx real. The last-traded price for the instrument.
LastTradedQty real. The last-traded quantity for the instrument.

LastTradeTime

long integer. The time of the last trade in POSIX format X 1000 (milliseconds
since 1 January 1970). See “Time— and Date-Stamp Formats” on page 8.

SessionOpen

real. Opening price. In markets with openings and closings, this is the opening
price for the current session; in 24-hour markets, it is the price as of UTC
Midnight.

SessionHigh real. Highest price during the trading day, either during a true session (with
opening and closing prices) or UTC midnight to UTC midnight.
SessionLow real. Lowest price during the trading day, either during a true session (with

opening and closing prices) or UTC midnight to UTC midnight.

SessionClose

real. The closing price. In markets with openings and closings, this is the closing
price for the current session; in 24-hour markets, it is the price as of UTC

Midnight.

Volume

real. The unit volume of the instrument traded, either during a true session (with
openings and closings) or in 24-hour markets, the period from UTC Midnight to
UTC Midnight.

CurrentDayVolume

real. The unit volume of the instrument traded either during a true session (with
openings and closings) or in 24-hour markets, the period from UTC Midnight to
UTC Midnight.

CurrentDayNumTrades integer. The number of trades during the current day, either during a true session
(with openings and closings) or in 24-hour markets, the period from UTC Midnight
to UTC Midnight.

CurrentDayPxChange real. Current day price change, either during a true trading session or UTC

Midnight to UTC midnight.

Rolling24HrVolume

real. Unit volume of the instrument during the past 24 hours, regardless of time
zone. Recalculates continuously.

Rolling24HrNumTrades

integer. Number of trades during the past 24 hours, regardless of time zone.
Recalculates continuously.

Rolling24HrPxChange

real. Price change during the past 24 hours, regardless of time zone.
Recalculates continuously.

Table continued on page 173

SubscribeLevel1

Table continued from page 172

TimeStamp long integer. The time this information was provided, in POSIX format X 1000
milliseconds since 1 January . See “Time— and Date-Stamp Formats” on
illi ds si 1J 1970). See “Ti d Date-St F ts”
page 8.

See Also

SubscribeAccountEvents, SubscribeLevel2, SubscribeTicker, SubscribeTrades,
UnsubscribeLevell, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

173

SubscribeLevel1

174

Subscribelevel2

No authentication required — trading venue operator may control access

Retrieves the latest Level 2 Ticker information and then subscribes the user to Level 2 market data
event updates for one specific instrument. Level 2 allows the user to specify the level of market depth
information on either side of the bid and ask. For more information about Level 1 and Level 2, see
“Level 1 and Level 2 Market Information” on page 3. The SubscribeLevel2 call responds with the Level
2 response shown below. The OMS then periodically sends Level2UpdateEvent information in the same
format as this response until you send the UnsubscribeLevel2 call.

Note: Depth in this call is “depth of market,” the number of buyers and sellers at greater or lesser prices in
the order book for the instrument.

Request
You can identify the instrument either by ID or by market symbol.
{
“oMsid”: 1,
“InstrumentId”: 0
“Depth”: 10
}
or
{
“oMsid”: 1,
“Symbol”: “BTCUSD”
“Depth”: 10
}
Where:
String Value
OMSId integer. The ID of the Order Management System on which the instrument
trades.
Instrumentld integer. The ID of the instrument you're tracking. Conditionally optional.
Symbol string. The symbol of the instrument you're tracking. Conditionally optional.
Depth integer. The depth of the order book. The example request returns 10 price
levels on each side of the market.
Response

The response is a single object (for one specific instrument). The Level2UpdateEvent contains the
same data, but is sent by the OMS when trades occur.
{
“MDUpdateID”: O,

“Accounts”: 0,
“ActionDateTime”: 635872032000000000,

Code continued on page 176

175

SubscribeLevel2

Code continued from page 175

“ActionType”: {

“Options”: [

“New”,
“Update”,
“Delete”

]
“LastTradePrice”: O,
“Orders”: 0,
“Price”: 0O,
“ProductPairCode”: 0,
“Quantity”: O,

See Also

176

“Side”: 0,
Where:
String Value
MDUpdatelD integer. Market Data Update ID. This sequential ID identifies the order in which
the update was created.
Accounts integer. The number of accounts that have orders at this price level.

ActionDateTime

string. ActionDate Time identifies the time and date that the snapshot was taken
or the event occurred, in POSIX format X 1000 (milliseconds since 1 January
1970). See “Time— and Date-Stamp Formats” on page 8.

ActionType string. L2 information provides price data. This value shows whether this data is
new, an update, or a deletion. One of:
New
Update
Delete

LastTradePrice real. The price at which the instrument was last traded.

Orders integer. The number of orders at this price point. Whether it is a Buy or Sell order
is shown by Side, below.

Price real. Bid or Ask price for the Quantity (see Quantity below).

ProductPairCode integer. ProductPairCode is the same number and used for the same purpose
as InstrumentID. The two are completely equivalent in value. Instrumentld 47 =
ProductPairCode 47.

Quantity real. Quantity available at a given Bid or Ask price (see Price above).

Side integer. One of:

0 Buy

1 Sell

2 Short (reserved for future use)
3 Unknown (error condition)

SubscribeAccountEvents, SubscribeLevell, SubscribeTicker, SubscribeTrades,

UnsubscribeLevell, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

SubscribeTicker

No authentication required — trading venue operator may control access

Subscribes a user to a Ticker Market Data Feed for a specific instrument and interval.
SubscribeTicker sends a response object as described below, and then periodically returns a
TickerDataUpdateEvent that matches the content of the response object.

Request
{
“OMsSId”: 1,
“InstrumentId”: 1,
“Interval”: 60,
“IncludeLastCount”: 100
}
Where:
String Value
OMSId integer. The ID of the Order Management System
Instrumentld long integer. The ID of the instrument whose information you want to track.
Interval integer. Specifies in seconds how frequently to obtain ticker updates. Default is
60 — one minute.
IncludeLastCount integer. The limit of records returned in the ticker history. The default is 100.
Response

The response returns an array of objects, each object an unlabeled, comma-delimited set of
numbers. The Open price and Close price are those at the beginning of the tick — the Interval time
subscribed to in the request.

A typical response might look like this:

[[1510719222970.21,6943.51,6890.27,6898.41,6891.16,0,6890.98,6891.98,1,
1510718681956.34]1,

Here are the values in order with an explanation:
[

“EndDateTime”: 0, // POSIX format
“HighPX”: 0,

“LowPX”: 0,

“OpenPX”: 0,

“ClosePX”: 0,

“Volume”: 0,

“Bid”: 0,

“Ask”: O,

“InstrumentId”: 1,
“BeginDateTime”: 0 // POSIX format

177

SubscribeTicker

See Also

SubscribeAccountEvents, SubscribeLevell, SubscribeLevel2, SubscribeTrades,
UnsubscribeLevell, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

178

SubscribeTrades

Subscribes an authenticated user to the Trades Market Data Feed for a specific instrument.

Each trade has two sides: Buy and Sell.
SubscribeTrades returns the response documented here for your immediate information,
then periodically sends the OrderTradeEvent documented in SubscribeAccountEvents.

“OMSId”: 1,
“InstrumentId”: 1,
“IncludeLastCount”: 100

Value

integer. The ID of the Order Management System on which the instrument is
traded.

long integer. The ID of the instrument whose trades will be reported.

Request
{
}
Where:
String
OMSId
Instrumentld
IncludeLastCount
Response

integer. Specifies the number of previous trades to retrieve in the immediate
snapshot. Default is 100.

The response returns an array of trades. Both sides of each trade are described.

[

Code continued on page 180

“OMSId”: 0,
“TradeID”: O,
“ProductPairCode”: 0,
“Quantity”: O,
“Price”: 0,
“Orderl”: 0O,
“Order2”: 0,
“TradeTime”: “0001-01-01T05:00:002",
“Direction”: {
“Options”: [
“NoChange”,
“UpTick”,
“DownTick”
]
}7
“TakerSide”: 0,
“SidelAccountId”: O,
“Side2AccountId”: O,
“OrderlSide”: {
“Options”: [
“Buy”,
“sell”,

179

SubscribeTrades

Code continued from page 179

“Short”,
“Unknown”
]
} 4
“Order2Side”: {
“Options”: [
Buy”,
“Sell”,
“Short”,
“Unknown”
]
} 4
“BlockTrade”: false,
“OrderlClientId”: 0,
“Order2ClientId”: 0,
} 4
}
]
Where:
String Value
OMSId integer. The ID of the Order Management System where the instrument to be
tracked is traded.
TradelD integer. The ID of this trade.
ProductPairCode integer. ProductPairCode is the same number and used for the same purpose
as InstrumentID. The two are completely equivalent in value. Instrumentld 47 =
ProductPairCode 47.
Quantity real. The quantity of the instrument traded.
Price real. The price at which the instrument traded.
Order1 integer. The ID of one of the orders that resulted in the trade.
Order2 integer. The ID of the other order that resulted in the trade.
TradeTime long integer. The time at which the trade took place. UTC time. See “Time— and
Date-Stamp Formats” on page 8.
Direction string. Effect of the trade on the instrument’s market price. One of:
0 NoChange
1 UpTick
2 DownTick
TakerSide integer. Which side of the trade took liquidity? One of:
0 Buy
1 Sell
The maker side of the trade provides liquidity by placing the order on the book
(this can be a buy or a sell order). The other side takes the liquidity. It, too, can be
buy-side or sell-side.
Side1Accountld integer. The account ID of the 1-side of the trade.
Side2Accountld integer. The account ID of the 2-side of the trade.

1 80 Table continued on page 181

Table continued from page 180

See Also

SubscribeTrades

Order1Side

string. The side taken by order 1 of the trade. One of:
0 Buy

1 Sell

2 Short (reserved for future use)

3 Unknown (error condition)

Order2Side

string. The side taken by order 2 of the trade. One of:
0 Buy

1 Sell

2 Short (reserved for future use)

3 Unknown (error condition)

BlockTrade

Boolean. Was this a privately negotiated trade that was reported to the OMS? A
private trade returns true; otherwise false. Default is false.

Order1Clientld

long integer. The client-supplied order ID of the 1-side client.

Order2Clientld

long integer. The client-supplied order ID of the 2-side client.

SubscribeAccountEvents, SubscribeLevell, SubscribeLevel2, SubscribeTicker,
UnsubscribeLevell, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

181

SubscribeTrades

182

UnsubscribelLevel

No authentication required

Unsubscribes the user from a Level 1 Market Data Feed subscription.

Request
{
“OMSId”: 1,
“InstrumentId”: 1
}
Where:
String Value
OMSId integer. The ID of the Order Management System on which the user has
subscribed to a Level 1 market data feed.
Instrumentld long integer. The ID of the instrument being tracked by the Level 1 market data
feed.
Response
{
“result”: true,
“errormsg”: null,
“errorcode”:0,
“detail”: null
}
Where:
String Value
result Boolean. A successful receipt of the unsubscribe request returns true; and
unsuccessful receipt (an error condition) returns false.
errormsg string. A successful receipt of the unsubscribe request returns null; the errormsg
parameter for an unsuccessful request returns one of the following messages:
Not Authorized (errorcode 20)
Invalid Request (errorcode 100)
Operation Failed (errorcode 101)
Server Error (errorcode 102)
Resource Not Found (errorcode 104)
errorcode integer. A successful receipt of the unsubscribe request returns 0. An
unsuccessful receipt returns one of the errorcodes shown in the errormsg list.
detail string. Message text that the system may send. Usually null.

183

UnsubscribelLevell

See Also

SubscribeAccountEvents, SubscribeLevell, SubscribeLevel2, SubscribeTicker,
SubscribeTrades, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

184

UnsubscribelLevel2

No authentication required

Unsubscribes the user from a Level 2 Market Data Feed subscription..

Request
“OMSId”: 1,
“InstrumentId”: 1
}
Where:
String Value
OMSId integer. The ID of the Order Management System on which the user has
subscribed to a Level 2 market data feed.
Instrumentld long integer. The ID of the instrument being tracked by the Level 2 market data
feed.
Response
{
“result”: true,
“errormsg”: null,
“errorcode”:0,
“detail”: null
}
Where:
String Value
result Boolean. A successful receipt of the unsubscribe request returns true; and
unsuccessful receipt (an error condition) returns false.
errormsg string. A successful receipt of the unsubscribe request returns null; the errormsg
parameter for an unsuccessful request returns one of the following messages:
Not Authorized (errorcode 20)
Invalid Request (errorcode 100)
Operation Failed (errorcode 101)
Server Error (errorcode 102)
Resource Not Found (errorcode 104)
errorcode integer. A successful receipt of the unsubscribe request returns 0. An
unsuccessful receipt returns one of the errorcodes shown in the errormsg list.
detail string. Message text that the system may send. Usually null.

185

UnsubscribelLevel2

See Also

SubscribeAccountEvents, SubscribeLevell, SubscribeLevel2, SubscribeTicker,
SubscribeTrades, UnsubscribeLevell, UnsubscribeTicker, UnsubscribeTrades

186

UnsubscribeTicker

No authentication required

Unsubscribes a user from a Ticker Market Data Feed

Request
[
“OMSId”: 1,
“InstrumentId”: 1
}
Where:
String Value
OMSId integer. The ID of the Order Management System on which the user has
subscribed to a ticker market data feed.
Instrumentld long integer. The ID of the instrument being tracked by the ticker market data
feed.
Response
{
“result”: true,
“errormsg”: null,
“errorcode”:0,
“detail”: null
}
Where:
String Value
result Boolean. A successful receipt of the unsubscribe request returns true; and
unsuccessful receipt (an error condition) returns false.
errormsg string. A successful receipt of the unsubscribe request returns null; the errormsg
parameter for an unsuccessful request returns one of the following messages:
Not Authorized (errorcode 20)
Invalid Request (errorcode 100)
Operation Failed (errorcode 101)
Server Error (errorcode 102)
Resource Not Found (errorcode 104)
errorcode integer. A successful receipt of the unsubscribe request returns 0. An
unsuccessful receipt returns one of the errorcodes shown in the errormsg list.
detail string. Message text that the system may send. Usually null.

187

UnsubscribeTicker

See Also

SubscribeAccountEvents, SubscribeLevell, SubscribeLevel2, SubscribeTicker,
SubscribeTrades, UnsubscribeLevell, UnsubscribeLevel2, UnsubscribeTrades

188

UnsubscribeTrades

No authentication required

Unsubscribes a user from the Trades Market Data Feed.

Request
[
“OMSId”: 1,
“InstrumentId”: 1
}
Where:
String Value
OMSId integer. The ID of the Order Management System on which the user has
subscribed to a trades market data feed.
Instrumentld long integer. The ID of the instrument being tracked by the trades market data
feed.
Response
{
“result”: true,
“errormsg”: null,
“errorcode”:0,
“detail”: null
}
Where:
String Value
result Boolean. A successful receipt of the unsubscribe request returns true; and
unsuccessful receipt (an error condition) returns false.
errormsg string. A successful receipt of the unsubscribe request returns null; the errormsg
parameter for an unsuccessful request returns one of the following messages:
Not Authorized (errorcode 20)
Invalid Request (errorcode 100)
Operation Failed (errorcode 101)
Server Error (errorcode 102)
Resource Not Found (errorcode 104)
errorcode integer. A successful receipt of the unsubscribe request returns 0. An
unsuccessful receipt returns one of the errorcodes shown in the errormsg list.
detail string. Message text that the system may send. Usually null.

189

UnsubscribeTrades

See Also

SubscribeAccountEvents, SubscribeLevell, SubscribeLevel2, SubscribeTicker,
SubscribeTrades, UnsubscribeLevell, UnsubscribeLevel2, UnsubscribeTicker

