
Background Information

This section provides important information about the Coinext exchange software..

Standard Response Object and Common Error Codes

A response to an API call usually consists of a specific response object (as documented in this
guide), but both successful and unsuccessful responses may consist of a generic response object that
verifies that the call was received; the response to an unsuccessful call provides an error code. A
generic response looks like:

{
 “result”: true,

 “errormsg”: “”,

 “errorcode”: 0,

 “detail”: “”,

 }

Where:

String

Value

result Boolean. If the call has been successfully received by the Order Management

 System, result is true; otherwise, it is false.

3

 Background Information

Table continued from page 2
 errormsg string. A successful receipt of the call returns null; the errormsg parameter for an
 unsuccessful call returns one of the following messages:
 Not Authorized (errorcode 20)
 Invalid Request (errorcode 100)
 Operation Failed (errorcode 101)
 Server Error (errorcode 102)
 Resource Not Found (errorcode 104)

 errorcode integer. A successful receipt of the call returns 0. An unsuccessful receipt of the
 call returns one of the errorcodes shown in the errormsg list.

 detail string. Message text that the system may send. The content of this parameter is
 usually null.

Products and Instruments

In Coinext software, a product is an asset that is tradable or paid out. A product might be a
currency or a commodity or something else. For example, a product might be a US Dollar or a New
Zealand Dollar or a BitCoin or an ounce of gold. Fees are denominated in products. (Products may
also be referred to as assets in the API calls.)

An instrument is a pair of exchanged products (or fractions of them). For example, US Dollars
and an ounce of gold, or an ounce of gold and BitCoins. In conventional parlance, a stock or a
bond is called an instrument, but implicit in that is the potential exchange of one product for
another (stock for dollars). Coinext software thinks of that exchange as explicit.

4

Background Information

Quotes and Orders

The Coinext API includes calls related to both quotes and orders.

QQ A quote expresses a willingness to buy or sell at a given price.

QQ An order is a directive to buy or sell.

In Version 2.23.9 or earlier of the Coinext matching engine software, quotes and orders are
synonymous. They both can result in a sell or a buy. This is because the matching engine (like most
matching engines) requires a “firm quote” — a guaranteed bid or ask. For both quotes and orders,
trading priority is the same, and no preference is given one over the other. In code, the matching
engine flags a quote for eventual regulatory and compliance rules, but as far as current software
operation and trade execution, they behave equivalently.

Quoting is not enabled for the retail end user of the Coinext software. Only registered
market participants or market makers may quote.

Your trading venue may offer quotes separately from orders.
Best practices: Use the order-related API calls in preference to quote-related calls unless

you specifically require the quote-related calls.

Order-related API calls Quote-related API calls

CancelAllOrders CancelQuote

CancelOrder CreateQuote

CancelReplaceOrder GetOpenQuotes

GetOpenOrders UpdateQuote

GetOrderFee

GetOrderHistory

GetOrderStatus

ModifyOrder

SendOrder

5

Background Information

6

Contents Common to Many API Calls

These items appear in many of the API calls. Rather than explain them in place, we explain
them here.

Note: There is occasional variance in the naming, spelling, and capitalization of string names, even those

string/value pairs that refer to the same thing. For example, AssetId and ProductId are not
interchangeable, even though they refer to the same data. Naming, spelling, and capitalization must
follow the forms shown in the document.

Order Types

Used by: CancelReplaceOrder, GetOpenOrders, GetOpenQuotes, GetOrderFee,
GetOrderHistory, GetOrderHistoryByOrderId, GetOrdersHistory, GetOrderStatus,
and SendOrder.

Where:

Type

Definition

0 Unknown The order type is unknown. Because all orders have a type, this is an error

 condition.

1 Market An order to buy or sell an instrument at the best available price. Contains no

 restrictions on price or time frame.

2 Limit An order to buy or sell a set amount of an instrument at a specified price or better.

 A limit order may not be executed if the price set is not met during the time that

 the order is open.

3 StopMarket An order to buy or sell only when an instrument reaches a set price. Once the

 instrument reaches this price, the order becomes a market order.

4 StopLimit An order to buy or sell only when an instrument reaches a set price. Once the

 instrument reaches this price, the order becomes a limit order to buy or sell at the

 limit price or better.

5 TrailingStopMarket An order that sets the stop price for an instrument at a price with a fixed offset

 relative to the market price. If the market moves and the stop price is reached,

 the order becomes a market order.

6 TrailingStopLimit An order that recalculates the stop price for an instrument at a fixed offset relative

 to the market price. It also recalculates the limit price based on a different fixed

 offset. If the market reaches the stop price, the order becomes a limit order.

7 BlockTrade A privately executed trade.

7

Contents Common to Many API Calls

Display Quantity

Used by: CancelReplaceOrder, GetOpenOrders, GetOpenQuotes, GetOrderHistory,
GetOrderHistoryByOrderId, GetOrdersHistory, GetOrderStatus, and SendOrder

Display Quantity is the quantity of a product available to buy or sell that is publicly displayed

to the market. A larger quantity may be made available for buying or selling, but it may
be disadvantageous to show that amount all at once.

The number of units in a DisplayQuantity field appears as that number until the total number
of units available or sought drops below the DisplayQuantity value set by the user. For example,
if there are 100 units offered, but the DisplayQuantity value is set to 10, 10 continues to display as
trading continues, until the number of units available for sale drops below 10.

The default value is 1.
To make use of a DisplayQuantity value, an order must be a limit order with a reserve. See

“Order Types” on page 7.

Time– and Date-Stamp Formats

Coinext software uses three different time- and date-stamp formats. Unless otherwise
specified, POSIX format is used.

QQ POSIXct class stores date/time values as the number of seconds since 1 January 1970

(long integer). Coinext software often multiplies this number by 1000 for the number of
milliseconds since 1 January 1970. For more information on this format, consult:
https://www.stat.berkeley.edu/~s133/dates.html

QQ ISO 8601 format stores the date and time with its time zone (in Coinext, that time

zone is always Zulu or UTC time). For example:

yyyymmddThhmmssZ
20080915T155300Z

Where T indicates the beginning of the time information, and Z (Zulu/UTC) indicates the time
zone — in this case, Zulu time. For more information on this format, consult:
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/a003169814.htm

QQ Microsoft ticks format represents the number of ticks that have elapsed since 00:00:00

UTC, 1 January 0001, in the Gregorian calendar. A single tick represents one hundred
nanoseconds (one ten-millionth of a second). There are 10,000 ticks in a millisecond;
ten million ticks in a second. It does not include the number of ticks attributable to
leap-seconds.

Microsoft provides the following sample code in C#
(https://msdn.microsoft.com/en-us/library/system.datetime.ticks(v=vs.110).aspx):

Code continued on page 9

DateTime centuryBegin = new DateTime(2001, 1,

1); DateTime currentDate = DateTime.Now;

long elapsedTicks = currentDate.Ticks - centuryBegin.Ticks;

TimeSpan elapsedSpan = new TimeSpan(elapsedTicks);

Console.WriteLine(“Elapsed from the beginning of the century
to {0:f}:”,

Console.WriteLine(“
currentDate);

{0:N0} nanoseconds”, elapsedTicks * 100);

Console.WriteLine(“ {0:N0} ticks”, elapsedTicks);

Console.WriteLine(“ {0:N2} seconds”, elapsedSpan.TotalSeconds);

Console.WriteLine(“ {0:N2} minutes”, elapsedSpan.TotalMinutes);

Console.WriteLine(“ {0:N0} days, {1} hours, {2} minutes, {3}

seconds”,

elapsedSpan.Days, elapsedSpan.Hours,

elapsedSpan.Minutes, elapsedSpan.Seconds);

// If run on December 14, 2007, at 15:23, this example displays the
// following output to the console:
// Elapsed from the beginning of the century to Friday, December 14,
2007 3:23 PM:
// 219,338,580,000,000,000 nanoseconds

8

Code continued from page 8

Contents Common to Many API Calls

// 2,193,385,800,000,000 ticks
// 219,338,580.00 seconds
// 3,655,643.00 minutes
// 2,538 days, 15 hours, 23 minutes, 0 seconds

The Trading Day

Most Coinext installations operate 24-hour computer-based trading venues. The trading day
runs from UTC Midnight to UTC Midnight (essentially, London UK time, but without a summer
offset). For values that comprise a per-day quantity (TotalDayDeposits, for example), the day runs
from UTC Midnight to UTC Midnight, regardless of the venue’s nominal location.

Deposit and Withdraw Templates

Templates provide a set of information about banking tasks during deposits and withdrawals,
in the form of specific string/value pairs. Each template has a name. There are different templates
for different types of deposit and withdrawal, determined by the product or asset (BitCoin,
Monero, US Dollar, etc.), the specific bank or other account provider, and the information that the
account provider requires for transactions.

Most templates are used for withdrawals.
Following, are two example templates.

“TemplateFormType”: “Standard”,
{
“Full Name”: “John Smith”,
“Language”: “en”,
“Comment” : ““,
“BankAddress”: “123 Fourth St.”,
“BankAccountNumber”: “12345678”,
“BankAccountName”: “John Smith & Sons”,
“SwiftCode”: “ABCDUSA1”

}

“TemplateFormType”: “TetherRpcWithdraw”,
{
“TemplateType”: “TetherRpcWithdraw”,
“Comment”: “TestWithdraw”,
“ExternalAddress”: “ms6C3pKAAr8gRCcnVebs8VRkVrjcvqNYv3”

}
The content of the template depends on the account provider that you use for deposits and

withdrawals. The account provider does not supply the template per se (they do, however,
determine the fields that are in the template). The template is specific to each account provider.
In one case, an unusual requirement of the account provider necessitated in the pre-population of
certain request fields.

To determine which withdrawal template types are available to you,
call GetWithdrawTemplateTypes.

Report Types

There are three report types:

QQ Trade Activity: Generates a report on both open and executed trades made by a set of
Account IDs on a given Order Management System during a specified period.

QQ Transaction: Generates a report on all transactions executed by a set of Account IDs on

a given Order Management System during a specified period.

QQ Treasury: Generates a report on all company treasury activities related to the trading
venue — withdrawals, transfers, and funds movements unrelated to trading. The report
comprises activities by a set of Account IDs on the given Order Management System for
a specified period.

The Order Management System echoes back the Report Type as a confirmation of the call.

9

Contents Common to Many API Calls

Request Status

When you generate a report on demand or schedule a report to run with some periodicity, the
return object for the call provides the status of the report request in the RequestStatus string/value
pair.

In the case of a Generate or Schedule call, RequestStatus returns Submitted; in the case of
a GetUserReportTickets call, RequestStatus returns the status of the report within the system.

Table 1. Request Status definitions

Type Definition

0 Submitted Your report order has been submitted to the system.

1 Validating The system is making sure that you have the correct permissions to request
 the report. See “Permissions” on page 4.

2 Scheduled The report is scheduled to be run.

3 InProgress The report is currently being prepared.

4 Completed The report has been completed and delivered.

5 Aborting The system is stopping preparation of the report.

6 Aborted The report preparation has stopped.

7 UserCanceled You have canceled this report.

8 SysRetired The system has canceled the report on your behalf.

9 UserCanceledPending You have requested a report cancellation, but the report has not been
 canceled yet.

API calls that return requestStatus are: GenerateTradeActivityReport,
GenerateTransactionActivityReport, GenerateTreasuryActivityReport,
GetUserReportTickets, ScheduleTradeActivityReport, ScheduleTreasuryActivityReport, and
ScheduleTreasuryActivityReport.

10

Authentication

authenticate
No authentication required

authenticate authenticates a user (logs in a user) for the current websocket session. You must call
authenticate in order to use the calls in this document not otherwise shown as “No authentication
required.”

Request

Use the standard, basic HTTP authentication, sending the username and password. A curl command would be
something like:

curl -v 'https://your%40email.com:your-password@api.coinext.com.br:8443/AP/authenticate'

Response

Unsuccessful response:
{
“Authenticated”: false

}

Where:

String Value

Authenticated Boolean. The default response is false for an unsuccessful authentication.

A successful response returns the following (with UserId and SessionToken simulated):

{
“Authenticated”: true,
“Token”:”7d0ccf3a-ae63-44f5-a409-2301d80228bc”,
“UserId”: 1,
“AccountId”: 1,
“OMSId: 1

}

Where:

User Object:

String Value

Authenticated Boolean. The response is true for a successful authentication.
Table continued on page 16

15

authenticate

Table continued from page 15
SessionToken string. SessionToken uniquely identifies the session on the OMS. By returning

 the SessionToken in the response, the user can log in again if the session is
 interrupted without going through two-factor authentication.

UserId integer. Returns the user ID of the authenticated user.

See Also

Authenticate2FA

16

Authenticate2FA
No authentication required

Completes the second part of a two-factor authentication by sending the authentication token from the
non-Coinext authentication system to the Order Management System. The call returns a
verification that the user logging in has been authenticated, and a token.

Here is how the two-factor authentication process works:

1. Call WebAuthenticateUser. The response includes values for TwoFAType and
TwoFAToken. For example, TwoFAType may return “Google,” and the TwoFAToken
then returns a Google-appropriate token (which in this case would be a QR code).

2. Enter the TwoFAToken into the two-factor authentication program, for example, Google

Authenticator. The authentication program returns a different token.

3. Call Authenticate2FA with the token you received from the two-factor
authentication program (shown as YourCode in the request example below).

Request

{
“Code”: “YourCode”

}

Where:

String Value

Code string. Code holds the token obtained from the other authentication source.

Response

 {

 “Authenticated”: true,

 “SessionToken”: “YourSessionToken”

 }

Where:

String

Value

Authenticated Boolean. A successful authentication returns true. Unsuccessful returns false.

SessionToken string. The SessionToken is valid during the current session for connections

 from the same IP address. If the connection is interrupted during the session, you

 can sign back in using the SessionToken instead of repeating the full two-factor

 authentication process. A session lasts one hour after last-detected activity or

 until logout.

17

Authenticate2FA

To send a session token to re-establish an interrupted session, send:

{
“SessionToken”: “YourSessionToken”

}

See Also

WebAuthenticateUser, LogOut

18

LogOut
No authentication required

Logout ends the current websocket session.

Request

There is no payload for a Logout request.
{ }

Response

{
 “result”:true,

 “errormsg”:null,

 “errorcode”:0,

 “detail”:null

 }

Where:

String

Value

result Boolean. A successful logout returns true; and unsuccessful logout (an error

 condition) returns false.

errormsg string. A successful logout returns null; the errormsg parameter for an

 unsuccessful logout returns one of the following messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

 Not Authorized and Resource Not Found are unlikely errors for a LogOut.

errorcode integer. A successful logout returns 0. An unsuccessful logout returns one of the

 errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

See Also:

authenticate, Authenticate2FA

19

LogOut

21

User Information Calls

GetUserInfo

Retrieves basic information about a user from the Order Management System. A user may only
see information about himself; an administrator (or superuser) may see, enter, or change
information about other users. See “Permissions” on page 4.

Request

No UserId is required in the request. The system assumes the current use.
{ }

Response

A successful response displays the settings for the user. An unsuccessful response generates
an error code. See “Standard Response Object and Common Error Codes” on page 2.

{
“UserId”: 1,
“UserName”: “John Smith”,
“Email”: “email@company.com”,
“PasswordHash”: “”,
“PendingEmailCode”: “”,
“EmailVerified”: true,
“AccountId”: 1,
“DateTimeCreated”:”2017-10-26T17:25:58Z”,
“AffiliateId”: 1,
“RefererId”: 1,
“OMSId”: 1,
“Use2FA”: false,
“Salt”: “”,
“PendingCodeTime”: “0001-01-01T00:00:00Z”,

}

Where:

String

Value

UserId integer. ID number of the user whose information is being set.

UserName string. Log-in name of the user; “jsmith”.

Email string. Email address of the user; “person@company.com”.

PasswordHash string. Not currently used. Returns an empty string.

PendingEmailCode string. Usually contains an empty string. During the time that a new user has

 been sent a registration email and before the user clicks the confirmation link, this

 pair contains a GUID — a globally unique ID string..

EmailVerified Boolean. Has your organization verified this email as correct and operational?

 True if yes; false if no. Defaults to false.

AccountId integer. The ID of the default account with which the user is associated.

Table continued on page 30
29

GetUserInfo

Table continued from page 29
DateTimeCreated long integer. The date and time at which this user record was created, in ISO

 8601 format. See “Time– and Date-Stamp Formats” on page 8.

AffiliatedId integer. The ID of an affiliated organization, if the user comes from an affiliated
 link. This is set to 0 if the user it not associated with an affiliated organization.

RefererId integer. Captures the ID of the person who referred this account member to the
 trading venue, usually for marketing purposes. Returns 0 if no referrer.

OMSId integer. The ID of the Order Management System with which the user is
 associated.

Use2FA Boolean. True if the user must use two-factor authentication; false if the user
 does not need to use two-factor authentication. Defaults to false.

Salt string. Reserved for future use. Currently returns an empty string.

PendingCodeTime long integer. A date and time in ISO 8601 format. Reserved. See “Time– and
 Date-Stamp Formats” on page 8.

See Also

GetAvailablePermissionList, GetUserPermissions, RegisterNewUser,
SetUserConfig, SetUserInfo

30
38

Order-handling calls

CancelAllOrders

Cancels all open matching orders for the specified instrument, account, user (subject to
permission level) or a combination of them on a specific Order Management System. User and
account permissions govern cancellation actions. See “Permissions” on page 4. For more
information on quotes and orders, see the explanation of “Quotes and Orders” on page 5.

Note: Multiple users may have access to the same account.

Specifying this

information…
Cancels all orders for…

User Acc’t Instr

37 14 25

X X X Account #14 belonging to user #37 for instrument #25.

X X Account #14 belonging to user #37 for all instruments.

X X All accounts belonging to user #37 for instrument #25.

X All accounts belonging to user #37 for all instruments.

 X X All users of account #14 for instrument #25.

 X All users of account #14 for all instruments.

 X All accounts of all users for instrument #25. (requires special permission)

 All accounts of all users for all instruments (requires special permission)

Request

{
 “AccountId”: 0, // conditionally optional

 “UserId”: 0, // conditionally optional

 “OMSId”: 0

 “InstrumentId”: 0, // conditionally optional

 }

Where:

String

Value

AccountId integer. The account for which all orders are being canceled. Conditionally

 optional.

UserId integer. The ID of the user whose orders are being canceled. Conditionally

 optional.

OMSId integer. The Order Management System under which the account operates.

 Required.

Table continued on page42

41

CancelAllOrders

Table continued from page 41
InstrumentId long integer. The ID of the instrument for which all orders are being cancelled.

 Conditionally optional.

Response

The response to CancelAllOrders verifies that the call was received, not that the orders
have been canceled successfully. Individual event updates to the user show orders as they
cancel. To verify that an order has been canceled, use GetOrderStatus or GetOpenOrders. :

{
 “result”: true,

 “errormsg”: “”,

 “errorcode”: 0,

 “detail”: “”,

 }

Where:

String

Value

result Boolean. If the call has been successfully received by the Order Management

 System, result is true; otherwise, it is false.

errormsg string. A successful receipt of the call returns null; the errormsg parameter for an

 unsuccessful call returns one of the following messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the call returns 0. An unsuccessful receipt of the

 call returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. The content of this parameter is

 usually null.

See Also

CancelOrder, CancelQuote, CancelReplaceOrder, CreateQuote, GetOpenOrders,
GetOpenQuotes, GetOrderStatus, ModifyOrder, SendOrder, UpdateQuote

42

CancelOrder

Cancels an open order that has been placed but has not yet been executed. Only a trading
venue operator can cancel orders for another user or account. See the explanation of ““Quotes
and Orders” on page 5.

Request

The OMS ID and the Order ID precisely identify the order you wish to cancel. The Order ID is
unique across an OMS.

If you specify the OMS ID and the Account ID, you must also specify at least the Client Order
ID. The OMS is unable to identify the order using only the OMS ID and the Client Order ID, as the
Client Order ID may not be unique.

{

“OMSId”: 0,
// conditionally optional

“AccountId”: 0

“ClientOrderId”: 0 // conditionally optional

“OrderId”: 0, // conditionally optional

}

Where:

String

Value

OMSId integer. The Order Management System on which the order exists. Required.

AccountId integer. The ID of account under which the order was placed. Conditionally

 optional.

ClientOrderId long integer. A user-assigned ID for the order (like a purchase-order number

 assigned by a company). ClientOrderId defaults to 0. Conditionally optional.

OrderId long integer. The order to be cancelled. Conditionally optional.

Response

The response to CancelOrder verifies that the call was received, not that the order has been
canceled successfully. Individual event updates to the user show order cancellation. To verify
that an order has been canceled, call GetOrderStatus or GetOpenOrders. :

{
“result”: true,
“errormsg”: “”,
“errorcode”: 0,
“detail”: “”,

}

43

CancelOrder

Where:

String

Value

result Boolean. Returns true if the call to cancel the order has been successfully

 received, otherwise returns false.

errormsg string. A successful receipt of a call to cancel an order returns null; the errormsg

 parameter for an unsuccessful call to cancel an order returns one of the following

 messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

errorcode integer. A successfully received call to cancel an order returns 0. An

 unsuccessfully recieved call to cancel an order returns one of the errorcodes

 shown in the errormsg list.

detail string. Message text that the system may send. The contents of this parameter

 are usually null.

See Also

CancelAllOrders, CancelQuote, CancelReplaceOrder, CreateQuote, GetOpenOrders,
GetOpenQuotes, GetOrderStatus, ModifyOrder, SendOrder, UpdateQuote

44

CancelQuote

Cancels a quote that has not been executed yet.
Quoting is not enabled for the retail end user of the Coinext software. Only registered market

participants or market makers may quote. Only a trading venue operator can cancel quotes for
another user. See the explanation of “Quotes and Orders” on page 5.

Request

You must identify the quote to be canceled by both BidQuoteId and AskQuoteId, which were
supplied by the system when the quote was created. You can optionally identify the canceled
quote using AccountId and InstrumentId. If the call does not include AccountId, the call assumes the
default AccountId for the logged-in user; if the call does not include InstrumentId, the call operates
on any instruments quoted by the account.

{
 “OMSId”: 0,

 “AccountId”: 0, // conditionally optional

 “InstrumentId”: 0, // conditionally optional

 “BidQuoteId”: 0, // required

 “AskQuoteId”: 0, // required

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System where the quote was

 requested. Required.

AccountId integer. The ID of the account that requested the quote. Conditionally optional.

InstrumentId long integer. The ID of the instrument being quoted. Conditionally optional.

BidQuoteId integer. The ID of the bid quote. Required.

AskQuoteId integer. The ID of the ask quote. Required.

Response

Returns two response objects, one for Bid and one for Ask.
The response to CancelQuote verifies that the call was received, not that the quote has been

canceled successfully. Individual event updates to the user show quotes as they cancel. To verify
that a quote has been canceled, use GetOpenQuotes.

{
“bidresult”: “{
“result”: true,
“errormsg”: “”,
“errorcode”: 0,
“detail”: “”,

}”,
askresult”: “{
“result”: true,

Code continued on page 46
45

CancelQuote

Code continued from page 45
“errormsg”: “”,
“errorcode”: 0,
“detail”: “”,

}”
}

Where:

String

Value

BidResult object. Returns a standard response object for Bid (see below).

AskResult object. Returns a standard response object for Ask.

Response objects for both BidResult and AskResult:

String Value

result Boolean. A successful receipt of the cancellation returns true; and unsuccessful
 receipt of the cancellation (an error condition) returns false.

errormsg string. A successful receipt of the cancellation returns null; the errormsg
 parameter for an unsuccessful receipt returns one of the following messages:
 Not Authorized (errorcode 20)
 Invalid Request (errorcode 100)
 Operation Failed (errorcode 101)
 Server Error (errorcode 102)
 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the cancellation returns 0. An unsuccessful
 receipt returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, CreateQuote, GetOpenOrders,
GetOpenQuotes, GetOrderStatus, ModifyOrder, SendOrder, UpdateQuote

46

CancelReplaceOrder

CancelReplaceOrder is single API call that both cancels an existing order and replaces it with a
new order. Canceling one order and replacing it with another also cancels the order’s priority in
the order book. You can use ModifyOrder to preserve priority in the book; but ModifyOrder
only allows a reduction in order quantity.

Note: CancelReplaceOrder sacrifices the order’s priority in the order book.

Request

{
“OMSId”: 0,
“OrderIdToReplace”: 0,
“ClientOrdId”: 0,
“OrderType”: {

“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

]
},
“Side”: {
“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”,

]
},
“AccountId”: 0,
“InstrumentId”: 0,
“TrailingAmount”: 0,
“LimitOffset”: 0,
“DisplayQuantity”: 0,
“LimitPrice”: 0,
“StopPrice”: 0, // conditionally optional
“PegPriceType”: {
“Options”: [

“Unknown”,
“Last”,
“Bid”,
“Ask”,
“Midpoint”

]
},
“TimeInForce”: {
“Options”: [
“Unknown”,
“GTC”,
“IOC”,
“FOK”,

]
},

Code continues on page 48

47

CancelReplaceOrder

Code continued from page 47
“OrderIdOCO”: 0,
“Quantity”: 0,

}

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the order is being

 canceled and replaced by another order.

OrderIdToReplace long integer. The ID of the order to replace with this order.

ClientOrderId long integer. A user-assigned ID for the new, replacement order (like a

 purchase-order number assigned by a company). This ID is useful for recognizing

 future states related to this order. ClientOrderId defaults to 0.

OrderType string. The type of the replacement order: See Order Types in “Contents

 common to many API calls.

 0 Unknown

 1 Market

 2 Limit

 3 StopMarket

 4 StopLimit

 5 TrailingStopMarket

 6 TrailingStopLimit

 7 BlockTrade

Side string. The side of the replacement order:

 0 Buy

 1 Sell

 2 Short (reserved for future use)

 3 Unknown (error condition)

AccountId integer. The ID of the account under which the original order was placed and the

 new order will be placed.

InstrumentId integer. The ID of the instrument being traded.

TrailingAmount real. The offset by which to trail the market in one of the trailing order types.

 Set this to the current price of the market to ensure that the trailing offset is the

 amount intended in a fast-moving market.

LimitPrice real. The price at which to execute the new order, if the order is a Limit order.

StopPrice real. The price at which to execute the new order, if the order is a Stop order

 (either buy or sell).

PegPriceType string. When entering a stop/trailing order, set PegPriceType to the type of price

 that pegs the stop.

 1 Last

 2 Bid

 3 Ask

 4 Midpoint

Table continued on page 49

48

 CancelReplaceOrder

Table continued from page 48
 TimeInForce string. The period during which the new order is executable.
 0 Unknown (error condition)
 1 GTC good ’til canceled
 3 IOC immediate or canceled
 4 FOK fill or kill — fill the order immediately, or cancel it immediately
 There may be other settings for TimeInForce depending on the trading venue.

 OrderIdOCO integer. One Cancels the Other — If the order being canceled in this call is order
 A, and the order replacing order A in this call is order B, then OrderIdOCO refers
 to an order C that is currently open. If order C executes, then order B is canceled.
 You can also set up order C to watch order B in this way, but that will require an
 update to order C.

 Quantity real. The amount of the order (buy or sell).

Response

The response returns the new replacement order ID and echoes back any replacement client
ID you have supplied, along with the original order ID and the original client order ID.

{
“ReplacementOrderId”: 1234,
“ReplacementClOrdId”: 1561,
“OrigOrderId”: 5678,
“OrigClOrdId”: 91011,

}

Where:

String

Value

ReplacementOrderId integer. The order ID assigned to the replacement order by the server.

ReplacementClOrdId long integer. Echoes the contents of the ClientOrderId value from the request.

OrigOrderId integer. Echoes OrderIdToReplace, which is the original order you are replacing.

OrigClOrdId long integer. Provides the client order ID of the original order (not specified in the

 requesting call).

See Also

CancelAllOrders, CancelOrder, CancelQuote, CreateQuote, GetOpenOrders,
GetOpenQuotes, GetOrderStatus, ModifyOrder, SendOrder, UpdateQuote

49

CancelReplaceOrder

50

CreateQuote

Creates a quote. A quote expresses a willingness to buy or sell at a given price. See “Quotes and
Orders” on page 5 for a discussion of how quotes and orders differ. Both a quote and an order will
execute. Quoting is not enabled for the retail end user of Coinext software. Only registered market
participants or market makers may quote.

Request

{
 “OMSId”: 0,

 “AccountId”: 0,

 “InstrumentId”: 0,

 “Bid”: 0,

 “BidQty”: 0,

 “Ask”: 0,

 “AskQty”: 0,

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the quote is being

 created. Required.

AccountId integer. The ID of the account in which the quote is being created. If the call

 provides no AccountId, the system assumes the default account ID for the

 logged-in user on the OMS.

InstrumentId long integer. The ID of the instrument being quoted. Required.

Bid real. The bid price. Required.

BidQty real. The quantity of the bid. Required.

Ask real. The ask price. Required.

AskQty real. The quantity of the ask. Required.

Response

{
“BidQuoteId”: 0,
“BidResult”: “{
“result”: true,
“errormsg”: “”,
“errorcode”: 0,
“detail”: “”,

}”,
“AskQuoteId”: 0,
“AskResult”: “{
“result”: true,

Code continued on page 52

51

CreateQuote

Code continued from page 51
“errormsg”: “”,
“errorcode”: 0,
“detail”: “”,

}”
}

Where:

String

Value

BidQuoteId integer. The ID of the bid quote returned by the Order Management System.

BidResult string. Returns a standard response object for Bid.

AskQuoteId integer. The ID of the ask quote returned by the Order Management System.

AskResult string. Returns a standard response object for Ask.

Response objects for both BidResult and AskResult.

String Value

result Boolean. A successful receipt of the request to create a quote returns true; and
 unsuccessful receipt of the request (an error condition) returns false.

errormsg string. A successful receipt of the request returns null; the errormsg parameter
 for an unsuccessful receipt returns one of the following messages:
 Not Authorized (errorcode 20)
 Invalid Request (errorcode 100)
 Operation Failed (errorcode 101)
 Server Error (errorcode 102)
 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the cancellation returns 0. An unsuccessful
 receipt returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

See Also

CancelQuote, GetOpenQuotes, UpdateQuote

52

GetAccountPositions

Retrieves a list of positions (balances) for a specific user account running under a specific
Order Management System. The trading day runs from UTC Midnight to UTC Midnight. See
“The Trading Day” on page 9 for more information.

Request

 {

 “AccountId”:4,

 “OMSId”: 1

 }

Where:

String

Value

AccountId integer. The ID of the authenticated user’s account on the Order Management

 System for which positions will be returned.

OMSId integer. The ID of the Order Management System to which the user belongs. A

 user will belong only to one OMS.

Response

The response returns an array of one or more positions for the account. This example
response has returned two positions:

[
{ // first position
“OMSId”:1,
“AccountId”:4,
“ProductSymbol”:”BTC”
“ProductId”:1
“Amount”:0,
“Hold”:0,
“PendingDeposits”:0,
“PendingWithdraws”:0,
“TotalDayDeposits”:0,
“TotalDayWithdraws”:0,
“TotalMonthWithdraws”:0

},
{ //second position
“OMSId”:1,
“AccountId”:4,
“ProductSymbol”:”USD”,
“ProductId”:2,
“Amount”:0, “Hold”:0,
“PendingDeposits”:0,

“PendingWithdraws”:0,
“TotalDayDeposits”:0,
“TotalDayWithdraws”:0,
“TotalMonthWithdraws”:0

}
]

57

GetAccountPositions

Where:

String

Value

OMSId Integer. The ID of the Order Management System (OMS) to which the user

 belongs. A user will only ever belong to one Order Management System.

AccountId integer. Returns the ID of the user’s account to which the positions belong.

ProductSymbol string. The symbol of the product on this account’s side of the trade. For

 example:

 BTC — BitCoin

 USD — US Dollar

 NZD — New Zealand Dollar

 Many other values are possible depending on the nature of the trading venue.

 See “Products and Instruments” on page 4 for the difference between these

 terms.

ProductId integer. The ID of the product being traded. The system assigns product IDs as

 they are entered into the system. See “Products and Instruments” on page 4

 for the difference between products and instruments. Use GetProduct to return

 information about the product by its ID.

Amount real. Unit amount of the product; for example, 10 or 138.5.

Hold real. Amount of currency held and not available for trade. A pending trade of 100

 units at $1 each will reduce the amount in the account available for trading by

 $100. Amounts on hold cannot be withdrawn while a trade is pending.

PendingDeposits real. Deposits accepted but not yet cleared for trade.

PendingWithdraws real. Withdrawals acknowledged but not yet cleared from the account. Amounts

 in PendingWithdraws are not available for trade.

TotalDayDeposits real. Total deposits on today’s date. The trading day runs between UTC Midnight

 and UTC Midnight.

TotalDayWithdraws real. Total withdrawals on today’s date. The trading day runs between UTC

 Midnight and UTC Midnight.

TotalMonthWithdraws real. Total withdrawals during this month to date. The trading day runs between

 UTC Midnight and UTC Midnight — likewise a month begins at UTC Midnight on

 the first day of the month.

See Also

GetOpenOrders, GetOpenQuotes, GetOrderStatus, GetTradesHistory

58

GetAccountTrades

Requests the details on up to 200 past trade executions for a single specific user account and its
Order Management System, starting at index i, where i is an integer identifying a specific execution
in reverse order; that is, the most recent execution has an index of 0, and increments by one as trade
executions recede into the past.

The operator of the trading venue determines how long to retain an accessible trading history
before archiving.

Request

{
 “AccountId”:4,

 “OMSId”: 1,

 “StartIndex”:0,

 “Count”:2

 }

Where:

String

Value

AccountId integer. The ID of the authenticated user’s account.

OMSId integer. The ID of the Order Management System to which the user belongs. A

 user will belong only to one OMS.

StartIndex integer. The starting index into the history of trades, from 0 (the most recent

 trade).

Count integer. The number of trades to return. The system can return up to 200 trades.

Response

The response is an array of objects, each of which represents the account’s side of a trade
(either buy or sell). The example shows an array of two buy executions.

[
{
“TradeTimeMS”: -62135446664520,
“Fee”: 0,
“FeeProductId”: 0,
“OrderOriginator”: 1,
“OMSId”: 1,
“ExecutionId”: 1,
“TradeId”: 1,
“OrderId”: 1,
“AccountId”: 4,
“SubAccountId”: 0,
“ClientOrderId”: 0,
“InstrumentId”: 1,
“Side”: “Buy”,
“Quantity”: 1,
“RemainingQuantity”: 0,
“Price”: 100,

Code continued on page 60
59

GetAccountTrades

Code continued from page 59
“Value”: 100,

 “TradeTime”: 1501354796406,

 “CounterParty”: null,

 “OrderTradeRevision”: 1,

 “Direction”: “NoChange”,

 “IsBlockTrade”: false

 },

 {

 “TradeTimeMS”: -62135446664520,

 “Fee”: 0,

 “FeeProductId”: 0,

 “OrderOriginator”: 1,

 “OMSId”: 1,

 “ExecutionId”: 3,

 “TradeId”: 2,

 “OrderId”: 3,

 “AccountId”: 4,

 “SubAccountId”: 0,

 “ClientOrderId”: 0,

 “InstrumentId”: 1,

 “Side”: “Buy”,

 “Quantity”: 1,

 “RemainingQuantity”: 0,

 “Price”: 1,

 “Value”: 1,

 “TradeTime”: 1501354796418,

 “CounterParty”: null,

 “OrderTradeRevision”: 1,

 “Direction”: “NoChange”,

 “IsBlockTrade”: false

]
}

 Where:

String

Value

 TradeTimeMS long integer. The date and time stamp of the trade in Microsoft tick format and

 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 Fee real. The fee for this trade in units and fractions of units (a $10 USD fee would be

 10.00, a .5-BitCoin fee would be 0.5).

 FeeProductId integer. The ID of the product that denominates the fee. Product types will vary

 on each trading venue. See GetProduct.

 OrderOriginator integer. The user ID of the user who entered the order that caused the trade for

 this account. (Multiple users can have access to an account.)

 OMSId integer. The ID of the Order Management System to which the user belongs. A

 user will belong only to one OMS.

 ExecutionId integer. The ID of this account’s side of the trade. Every trade has two sides.

 TradeId integer. The ID of the overall trade.

 OrderId long integer. The ID of the order causing the trade.

 AccountId integer. The Account ID that made the trade.

 SubAccountId integer. Not currently used.

Table continued on page 61

60

 GetAccountTrades

Table continued from page 60
 InstrumentId long integer. The ID of the instrument being traded. See “Products and
 Instruments” on page 4 for the difference. See GetInstrument to find
 information about this instrument by its ID.

 Side string. Buy or Sell
 0 Buy
 1 Sell
 2 Short (reserved for future use)
 3 Unknown (error condition)

 Quantity real. The unit quantity of the trade.

 RemainingQuantity integer. The number of units remaining to be traded by the order after this
 execution. This number is not revealed to the other party in the trade. This value
 is also known as “leave size” or “leave quantity.”

 Price real. The unit price at which the instrument traded.

 Value real. The total value of the deal. The system calculates this as:
 unit price X quantity executed.

 TradeTime integer. The time at which the trade took place, in POSIX format and UTC time
 zone. See “Time– and Date-Stamp Formats” on page 8.

 CounterParty long integer. Shows 0.

 OrderTradeRevision integer. This value increments if the trade has changed. Default is 1. For
 example, if the trade busts (fails to conclude), the trade will need to be modified
 and a revision number then will apply.

 Direction string. Shows if this trade has moved the book price up, down, or no change.
 Values:
 NoChange
 UpTick
 DownTick

 IsBlockTrade Boolean. Returns true if the trade was a reported trade; false otherwise.

See Also

GenerateTradeActivityReport, GetTradesHistory, ScheduleTradeActivityReport,
SubscribeTrades, UnsubscribeTrades

61

GetAccountTrades

62

GetAccountTransactions

Returns a list of transactions for a specific account on an Order Management System. The owner
of the trading venue determines how long to retain order history before archiving.

Note: In this call, “Depth” refers not to the depth of the order book, but to the count of trades to report.

Request

{
1,

“OMSId”:
1,

“AccountId”:

“Depth”: 200

}

Where:

String

Value

OMSId integer. The ID of the Order Management System from which the account’s

 transactions will be returned.

AccountId integer. The ID of the account for which transactions will be returned. If not

 specified, the call returns transactions for the default account for the logged-in

 user.

Depth integer. The number of transactions that will be returned, starting with the most

 recent transaction.

Response

The response returns an array of transaction objects.
[
{
{
“TransactionId”: 0,
“OMSId”: 0,
“AccountId”: 0,
“CR”: 0,
“DR”: 0,
“Counterparty”: 0,
“TransactionType”: {

“Options”: [
“Fee”,
“Trade”,
“Other”,
“Reverse”,
“Hold”

]
},
“ReferenceId”: 0,
“ReferenceType”: {

“Options”: [
“Trade”,
“Deposit”,

Code continues on page 64
63

GetAccountTransactions

Code continued from page 63

“Withdraw”,
“Transfer”,
“OrderHold”,
“WithdrawHold”,
“DepositHold”,
“MarginHold”

]
},
“ProductId”: 0,
“Balance”: 0,
“TimeStamp”: 0,

},
}

]

Where:

String

Value

TransactionId Integer. The ID of the transaction.

OMSId Integer. The ID of the Order Management System under which the requested

 transactions took place.

AccountId Integer. The single account under which the transactions took place.

CR real. Credit entry for the account on the order book. Funds entering an account.

DR real. Debit entry for the account on the order book. Funds leaving an account.

Counterparty long integer. Shows 0.

TransactionType string. One of:

 Fee — transaction is payment of a fee

 Trade — transaction is a trade (most usual entry)

 Other — non-trading transactions such as deposits and withdrawals

 Reverse — a hold has been reversed by this transaction

 Hold — funds are held while a transaction closes

ReferenceId long integer. The ID of the action or event that triggered this transaction.

ReferenceType string. The type of action or event that triggered this transaction. One of:

 Trade

 Deposit

 Withdraw

 Transfer

 OrderHold

 WithdrawHold

 DepositHold

 MarginHold

ProductId integer. The ID of the product on this account’s side of the transaction. For

 example, in a dollars-for-BitCoin transaction, one side will have the product Dollar

 and the other side will have the product BitCoin. See “Products and Instruments”

 on page 4 for more information about how these two items differ. Use

 GetProduct to return information about a product based on its ID.

Balance real. The balance in the account after the transaction.

TimeStamp long integer. Time at which the transaction took place, in POSIX format and UTC

 time zone.

64

GetAccountTransactions

See Also

GetAccountTransactions, ScheduleTransactionActivityReport

65

GetAccountTransactions

66

GetInstrument
No authentication required

Retrieves the details of a specific instrument from the Order Management System of the trading
venue. An instrument is a pair of exchanged products (or fractions of them) such as US dollars and
ounces of gold. See “Products and Instruments” on page 4 for more information about how
products and instruments differ.

Request

 {

 “OMSId”: 1,

 “InstrumentId”: 1

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System from where the instrument is

 traded.

InstrumentId long integer. The ID of the instrument.

Response

{
“OMSId”: 0,
“InstrumentId”: 0,
“Symbol”: “”,
“Product1”: 0,
“Product1Symbol”: “”,
“Product2”: 0,
“Product2Symbol”: “”,
“InstrumentType”: {
“Options”: [
“Unknown”,
“Standard”

]
},
“VenueInstrumentId”: 0,
“VenueId”: 0,
“SortIndex”: 0,
“SessionStatus”: {
“Options”: [
“Unknown”,
“Running”,
“Paused”,
“Stopped”,
“Starting”

]
},
“PreviousSessionStatus”: {
“Options”: [
“Unknown”,
“Running”,
“Paused”,

Code continued on page 68
67

GetInstrument

Code continued from page 67
“Stopped”,
“Starting”

]
},
“SessionStatusDateTime”: “0001-01-01T05:00:00Z”,
“SelfTradePrevention”: false,
“QuantityIncrement”: 0,

}

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the instrument is

 traded.

InstrumentId long integer. The ID of the instrument.

Symbol string. Trading symbol of the instrument.

Product1 integer. The first product comprising the instrument. For example, USD in a USD/

 BitCoin instrument.

Product1Symbol string. The symbol for Product 1 on the trading venue. For example, USD.

Product2 integer. The second product comprising the instrument. For example, BitCoin in

 a USD/BitCoin instrument.

Product2Symbol string. The symbol for Product 1 on the trading venue. For example, BTC.

InstrumentType string. The type of the instrument. All instrument types currently are standard,

 an exchange of one product for another (or unknown, an error condition), but this

 may expand to new types in the future.

 Unknown

 Standard

VenueInstrumentId long integer. If the instrument trades on another trading venue to which the user

 has access, this value is the instrument ID on that other venue. See VenueId.

VenueId integer. The ID of the trading venue on which the instrument trades, if not this

 venue. See VenueInstrumentId.

SortIndex integer. The numerical position in which to sort the returned list of instruments

 on a visual display. Since this call returns information about a single instrument,

 SortIndex should return 0.

SessionStatus string. Is the market for this instrument currently open and operational? Returns

 one of:

 Unknown

 Running

 Paused

 Stopped

 Starting

PreviousSessionStatus string. What was the previous session status for this instrument? One of:

 Unknown

 Running

 Paused

 Stopped

 Starting

68

Table continued on page 69

 GetInstrument

Table continued from page 68
 SessionStatusDateTime string. The time and date at which the session status was reported, in ISO 8601
 format. See “Time– and Date-Stamp Formats” on page 8.

 SelfTradePrevention Boolean. An account trading with itself still incurs fees. If this instrument
 prevents an account from trading the instrument with itself, the value returns true;
 otherwise defaults to false.

 QuantityIncrement integer. The number of decimal places for the smallest quantity of the instrument
 that can trade (analogous to smallest lot size). For example, the smallest
 increment of a US Dollar that can trade is 0.01 (one cent, or 2 decimal places).
 Current maximum is 8 decimal places. The default is 0.

See Also

GetInstruments, GetProduct, GetProducts

69

GetInstrument

70

GetInstruments
No authentication required

Retrieves an array of instrument objects describing all instruments available on a trading venue
to the user. An instrument is a pair of exchanged products (or fractions of them) such as US
dollars and ounces of gold. See “Products and Instruments” on page 4 for more information
about how products and instruments differ.

Request

{
“OMSId”: 1

}

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the instruments are

 available.

Response

The response for GetInstruments is an array of objects describing all the instruments available
to the authenticated user on the Order Management System.

[
{
{
“OMSId”: 0,
“InstrumentId”: 0,
“Symbol”: “”,
“Product1”: 0,
“Product1Symbol”: “”,
“Product2”: 0,
“Product2Symbol”: “”,
“InstrumentType”: {
“Options”: [
“Unknown”,
“Standard”
]

},
“VenueInstrumentId”: 0,
“VenueId”: 0,
“SortIndex”: 0,
“SessionStatus”: {
“Options”: [
“Unknown”,
“Running”,
“Paused”,
“Stopped”,
“Starting”
]

Code continued on page 72
71

GetInstruments

Code continued from page 71
},

“PreviousSessionStatus”: {
“Options”: [
“Unknown”,
“Running”,
“Paused”,
“Stopped”,
“Starting”
]

},
“SessionStatusDateTime”: “0001-01-01T05:00:00Z”,
“SelfTradePrevention”: false,
“QuantityIncrement”: 0,

},
}

]

 Where:

String

Value

 OMSId integer. The ID of the Order Management System on which the instrument is

 traded.

 InstrumentId long integer. The ID of the instrument.

 Symbol string. Trading symbol of the instrument.

 Product1 integer. The first product comprising the instrument. For example, USD in a USD/

 BitCoin instrument.

 Product1Symbol string. The symbol for Product 1 on the trading venue. For example, USD.

 Product2 integer. The second product comprising the instrument. For example, BitCoin in

 a USD/BitCoin instrument.

 Product2Symbol string. The symbol for Product 2 on the trading venue. For example, BTC.

 InstrumentType string. The type of the instrument. All instrument types currently are standard,

 an exchange of one product for another (or unknown, an error condition), but this

 may expand to new types in the future.

 Unknown

 Standard

 VenueInstrumentId long integer. If the instrument trades on another trading venue to which the user

 has access, this value is the instrument ID on that other venue. See VenueId.

 VenueId integer. The ID of the trading venue on which the instrument trades, if not this

 venue. See VenueInstrumentId.

 SortIndex integer. The numerical position in which to sort the returned list of instruments on

 a visual display.

 SessionStatus string. Is the market for this instrument currently open and operational? Returns

 one of:

 Unknown

 Running

 Paused

 Stopped

 Starting

Table continued on page 73

72

 GetInstruments

Table continued from page 72
 PreviousSessionStatus string. What was the previous session status for this instrument? One of:
 Unknown
 Running
 Paused
 Stopped
 Starting

 SessionStatusDateTime string. The time and date at which the session status was reported, in ISO 8601
 format. See “Time– and Date-Stamp Formats” on page 8.

 SelfTradePrevention Boolean. An account trading with itself still incurs fees. If this instrument
 prevents an account from trading the instrument with itself, the value returns true;
 otherwise defaults to false.

 QuantityIncrement integer. The number of decimal places for the smallest quantity of the instrument
 that can trade (analogous to smallest lot size). For example, the smallest
 increment of a US Dollar that can trade is 0.01 (one cent, or 2 decimal places).
 Current maximum is 8 decimal places. The default is 0.

See Also

GetInstrument, GetProduct, GetProducts

73

GetInstruments

74

GetOpenOrders

Returns an array of 0 or more orders that have not yet been filled (open orders) for a single account
for a given user on a specific Order Management System. The call returns an empty array if a user
has no open orders.

Request

 {

 “AccountId”:4,

 “OMSId”: 1

 }

Where:

String

Value

AccountId integer. The ID of the authenticated user’s account.

OMSId integer. The ID of the Order Management System to which the user belongs. A

 user will belong only to one OMS.

Response

This example response for GetOpenOrders returns an array containing both a buy-side and a
sell-side order. The call returns an empty array if there are no open orders for the account.

Code continues on page 76

[
{
“Side”: “Buy”,
“OrderId”: 1,
“Price”: 100,
“Quantity”: 1,
“DisplayQuantity”: 1,
“Instrument”: 1,
“Account”: 4,
“OrderType”: “Limit”,
“ClientOrderId”: 0,
“OrderState”: “Working”,
“ReceiveTime”: 1501354241987,
“ReceiveTimeTicks”: 636369510419870950,
“OrigQuantity”: 1,
“QuantityExecuted”: 0,
“AvgPrice”: 0,
“CounterPartyId”: 0,
“ChangeReason”: “NewInputAccepted”,
“OrigOrderId”: 1,
“OrigClOrdId”: 0,
“EnteredBy”: 1,
“IsQuote”: false,
“InsideAsk”: 9223372036.854775807,
“InsideAskSize”: 0,
“InsideBid”: 100,
“InsideBidSize”: 1,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,

75

GetOpenOrders

Code continued from page 75

“OMSId”: 1
},
{
“Side”: “Sell”,
“OrderId”: 2,
“Price”: 150,
“Quantity”: 1,
“DisplayQuantity”: 1,
“Instrument”: 1,
“Account”: 4,
“OrderType”: “Limit”,
“ClientOrderId”: 0,
“OrderState”: “Working”,
“ReceiveTime”: 1501354246718,
“ReceiveTimeTicks”: 636369510467182396,
“OrigQuantity”: 1,
“QuantityExecuted”: 0,
“AvgPrice”: 0,
“CounterPartyId”: 0,
“ChangeReason”: “NewInputAccepted”,
“OrigOrderId”: 2,
“OrigClOrdId”: 0,
“EnteredBy”: 1,
“IsQuote”: false,
“InsideAsk”: 150,
“InsideAskSize”: 1,
“InsideBid”: 100,
“InsideBidSize”: 1,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,
“OMSId”: 1

}
]

String Value

Side string. The open order can be Buy or Sell.
 0 Buy
 1 Sell
 2 Short (reserved for future use)
 3 Unknown (error condition)

OrderId long integer. The ID of the open order. The OrderID is unique in each Order
 Management Systsem.

Price real. The price at which the buy or sell has been ordered.

Quantity real. The quantity to be bought or sold.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.
 To display a DisplayQuantity value, an order must be a Limit order with a reserve.
 See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument integer. ID of the instrument being traded. See GetInstruments.

Account integer. The ID of the account that placed the order.

OrderType string. There are currently seven types of order. See “Order Types” on page
 7.

ClientOrderId long integer. A user-assigned ID for the order (like a purchase-order number
 assigned by a company). ClientOrderId defaults to 0.

Table continued on page 77

76

 GetOpenOrders

Table continued from page 76
 OrderState string. The current condition of the order. There are five order states:
 Working
 Rejected
 Canceled
 Expired
 FullyExecuted

 ReceiveTime long integer. The time at which the system received the order, in POSIX format
 and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 ReceiveTimeTicks long integer. The time stamp of the received order in Microsoft Tick format, and
 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 OrigQuantity integer. Original quantity of the order. The quantity of the actual execution may
 be lower than this number, but OrigQuantity shows the quantity in the order as
 placed.

 QuantityExecuted Integer. The number of units executed in this trade.

 AvgPrice real. Not currently used.

 CounterPartyId long integer. Shows 0.

 ChangeReason string. The reason that an order has been changed. Values:
1 NewInputAccepted
2 NewInputRejected
3 OtherRejected
4 Expired
5 Trade
6 SystemCanceled_NoMoreMarket
7 SystemCanceled_BelowMinimum
8 NoChange
100 UserModified

OrigOrderId long. ID of the original order. This number is also appended to

 CancelReplaceOrder. See CancelReplaceOrder.

EnteredBy integer. User ID of the person who entered the order.

IsQuote Boolean. True if the open order is a quote; false if not. See “Quotes and Orders”
 on page 5.

InsideAsk/InsideBid real. Best price available at time of entry (for ask or bid, respectively).

InsideAskSize/ real. Quantity available at the best inside ask (or bid) price.
InsideBidSize

LastTradePrice real. Last trade price for this product before this order was entered.

RejectReason string. If this order was rejected, RejectReason holds the reason for the
 rejection.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
 trade for both. Otherwise false.

OMSId integer. ID of the Order Management System on which the order was placed.

77

GetOpenOrders

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOrdersHistory,
GetOrderHistoryByOrderId, GetOrdersHistory, GetOrderStatus, ModifyOrder, SendOrder

78

GetOpenQuotes

Returns the current bid and ask quotes for a given instrument ID and account ID.

Request

{
 “OMSId”: 0,

 “AccountId”: 0,

 “InstrumentId”: 0,

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System where the instrument is traded

 whose quote may be open.

AccountId integer. The ID of the account whose open quotes will be returned.

InstrumentId long integer. The ID of the instrument being quoted.

Response

Returns a response object comprising a bid and an ask object.
{
“Bid”: {
“Side”: {
“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”
]

},
“OrderId”: 0,
“Price”: 0,
“Quantity”: 0,
“DisplayQuantity”: 0,
“Instrument”: 0,
“Account”: 0,
“OrderType”: {

“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

]
},
“ClientOrderId”: 0,
“OrderState”: {

Code continued on page 80
79

GetOpenQuotes

Code continued from page 79

Code continued on page 81

“Options”: [
“Unknown”,
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”

]
},
“ReceiveTime”: 0,
“ReceiveTimeTicks”: 0,
“OrigQuantity”: 0,
“QuantityExecuted”: 0,
“AvgPrice”: 0,
“CounterPartyId”: 0,
“ChangeReason”: {

“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled_NoMoreMarket”,
“SystemCanceled_BelowMinimum”,
“NoChange”,
“UserModified”

]
},
“OrigOrderId”: 0,
“OrigClOrdId”: 0,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: 0,
“InsideAskSize”: 0,
“InsideBid”: 0,
“InsideBidSize”: 0,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,
“OMSId”: 0,

},
“Ask”: {
“Side”: {

“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”

]
},
“OrderId”: 0,
“Price”: 0,
“Quantity”: 0,
“DisplayQuantity”: 0,
“Instrument”: 0,
“Account”: 0,
“OrderType”: {

“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

]
},
“ClientOrderId”: 0,
“OrderState”: {

80

Code continued from page 80

GetOpenQuotes

“Options”: [
“Unknown”,
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”

]
},
“ReceiveTime”: 0,
“ReceiveTimeTicks”: 0,
“OrigQuantity”: 0,
“QuantityExecuted”: 0,
“AvgPrice”: 0,
“CounterPartyId”: 0,
“ChangeReason”: {

“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled_NoMoreMarket”,
“SystemCanceled_BelowMinimum”,
“NoChange”,
“UserModified”

]
},
“OrigOrderId”: 0,
“OrigClOrdId”: 0,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: 0,
“InsideAskSize”: 0,
“InsideBid”: 0,
“InsideBidSize”: 0,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,
“OMSId”: 0,

},
}

Where:

String

Value

Bid Bid object (see below)

Ask Ask object (see below)

Bid and Ask objects differ only in the values for the strings.

String Value

Side string. One of:
 0 Buy
 1 Sell
 2 Short (reserved for future use)
 3 Unknown (error condition)

Table continued on page 82

81

GetOpenQuotes

Table continued from page 81
OrderId long integer. The ID of this quote. Quotes and orders are both executable. See

 “Quotes and Orders” on page 5.

Price real. Price of the Bid/Ask quote.

Quantity real. Quantity of the Bid/Ask quote.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.
 To display a DisplayQuantity value, an order must be a Limit order with a reserve.
 See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument integer. The ID of the instrument being quoted.

Account integer. The ID of the account quoting the instrument.

OrderType string. One of:
 Unknown
 Market
 Limit
 StopMarket
 StopLimit
 TrailingStopMarket
 TrailingStopLimit
 BlockTrade
 See “Order Types” on page 7.

ClientOrderId long integer. A user-assigned ID for the quote (like a purchase-order number
 assigned by a company). ClientOrderId defaults to 0.

OrderState string. One of:
 Unknown
 Working
 Rejected
 Canceled
 Expired
 FullyExecuted
 An open quote will probably have an OrderState of Working.

ReceiveTime long integer. The time at which the system received the quote, in POSIX format
 and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

ReceiveTimeTicks long integer. The time stamp of the received quote in Microsoft Ticks format and
 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

OrigQuantity real. If the quote has been changed, this value shows the original quantity of the
 quote.

QuantityExecuted real. This value states the quantity that was executed. It may be the same as the
 quantity of the quote; it may be different.

AvgPrice real. Not currently used.

CounterPartyId long integer. Shows 0.

Table continued on page 83
82

 GetOpenQuotes

Table continued from page 82
 ChangeReason string. If the quote has been changed, this value shows the reason. One of:
 Unknown
 NewInputAccepted
 NewInputRejected
 OtherRejected
 Expired
 Trade
 SystemCanceled_NoMoreMarket
 SystemCanceled_BelowMinimum
 NoChange
 UserModified

 OrigOrderId integer. If the quote has been changed, shows the original order ID. (Quotes and
 orders are in some ways interchangeable. See “Quotes and Orders” on page
 5.

 OrigClOrdId long integer. If the quote has been changed, shows the original client order ID, a
 value that the client can create (much like a purchase order).

 EnteredBy integer. The ID of the user who entered the quote.

 IsQuote Boolean. If this order is a quote (rather than an order), returns true, otherwise
 false. Default is false.

 InsideAsk real. Best Ask price available at time of entry (generally available to market
 makers).

 InsideAskSize real. Quantity available at the best inside ask price (generally available to market
 makers).

 InsideBid real. Best Bid price available at time of entry (generally available to market
 makers).

 InsideBidSize real. Quantity available at the best inside Bid price (generally available to market
 makers)..

 LastTradePrice real. The price at which the instrument last traded.

 RejectReason string. If the quote was rejected, this string value holds the reason.

 IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
 trade for both. Otherwise false.

 OMSId integer. The ID of the Order Management System on which the quote was
 created.

See Also

CancelQuote, CreateQuote, UpdateQuote

83

GetOpenQuotes

84

GetOrderFee

Returns an estimate of the fee for a specific order and order type. Fees are set and calculated by the
operator of the trading venue.

Request

{
“OMSId”: 0,
“AccountId”: 0,
“InstrumentId”: 0,
“ProductId”: 0,
“Amount”: 0,
“Price”: 0,
“OrderType”: {

“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

]
},
“MakerTaker”: {

“Options”: [
“Unknown”,

 “Maker”,

 “Taker”

]

 },

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the trade would take

 place.

AccountId integer. The ID of the account requesting the fee estimate.

InstrumentId integer. The proposed instrument against which a trading fee would be charged.

ProductId integer. The ID of the product (currency) in which the fee will be denominated.

Amount real. The quantity of the proposed trade for which the Order Management System

 would charge a fee.

Price real. The price at which the proposed trade would take place. Supply your price

 for a limit order; the exact price is difficult to know before execution.

Table continued on page 86

85

GetOrderFee

Table continued from page 85

OrderType string. The type of the proposed order. One of:
 0 Unknown
 1 Market
 2 Limit
 3 StopMarket
 4 StopLimit
 5 TrailingStopMarket
 6 TrailingStopLimit
 7 BlockTrade
 See ““Order Types” on page 7.

MakerTaker string. Depending on the venue, there may be different fees for a maker (the
 order remains on the books for a period) or taker (the order executes directly). If
 the user places a large order that is only partially filled, he is a partial maker.
 0 Unknown
 1 Maker
 2 Taker

Response

{
0.01,

“OrderFee”:

“ProductId”: 1

}

Where:

String

Value

OrderFee real. The estimated fee for the trade as described. The minimum value is 0.01.

ProductId integer. The ID of the product (currency) in which the fee is denominated.

See Also

GetProduct, GetProducts

86

GetOrderHistory

Returns a complete list of all orders, both open and executed, for a specific account on the
specified Order Management System.

Request

 {

 “OMSId”: 1,

 “AccountId”: 1

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System where the orders were placed.

AccountId integer. The ID of the account whose orders will be returned

Response

The response returns an array of 1 or more order objects.
[
{
{
“Side”: {

“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”

]
},
“OrderId”: 0,
“Price”: 0,
“Quantity”: 0,
“DisplayQuantity”: 0,
“Instrument”: 0,
“Account”: 0,
“OrderType”: {

“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

]
},
“ClientOrderId”: 0,
“OrderState”: {

“Options”: [
“Unknown”,

Code continued on page 88
87

GetOrderHistory

Code continued from page 87
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”

]
},
“ReceiveTime”: 0,
“ReceiveTimeTicks”: 0,
“OrigQuantity”: 0,
“QuantityExecuted”: 0,
“AvgPrice”: 0,
“CounterPartyId”: 0,
“ChangeReason”: {

“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled_NoMoreMarket”,
“SystemCanceled_BelowMinimum”,
“NoChange”,
“UserModified”

]
},
“OrigOrderId”: 0,
“OrigClOrdId”: 0,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: 0,
“InsideAskSize”: 0,
“InsideBid”: 0,
“InsideBidSize”: 0,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,
“OMSId”: 0,

},
}

]

Where:

String

Value

Side string. One of:

 0 Buy

 1 Sell

 2 Short (reserved for future use)

 3 Unknown (error condition).

OrderId long integer. The ID of this order.

Price real. Price of the order.

Quantity real. Quantity of the order.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.

 To display a DisplayQuantity value, an order must be a Limit order with a reserve.

 See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument integer. The ID of the instrument being ordered.

Table continued on page 89

88

GetOrderHistory

Table continued from page 88

Account integer. The ID of the account ordering the instrument.

OrderType string. One of:
 Unknown
 Market
 Limit
 StopMarket
 StopLimit
 TrailingStopMarket
 TrailingStopLimit
 BlockTrade
 See “Order Types” on page 7.

ClientOrderId long integer. A user-assigned ID for the order (like a purchase-order number
 assigned by a company). ClientOrderId defaults to 0.

OrderState string. One of:
 Unknown
 Working
 Rejected
 Canceled
 Expired
 FullyExecuted
 An open order will probably not yet be fully executed.

ReceiveTime long integer. The time at which the system received the quote, in POSIX format.
 See “Time– and Date-Stamp Formats” on page 8.

ReceiveTimeTicks long integer. The time stamp of the received quote in Microsoft Ticks format. See
 “Time– and Date-Stamp Formats” on page 8.

OrigQuantity real. If the order has been changed, this value shows the original quantity.

QuantityExecuted real. This value states the quantity that was executed in the order. It may be the
 same as the quantity of the order; it may be different.

AvgPrice real. Not currently used.

CounterPartyId long integer. Shows 0.

ChangeReason string. If the order has been changed, this value shows the reason. One of:
 Unknown
 NewInputAccepted
 NewInputRejected
 OtherRejected
 Expired
 Trade
 SystemCanceled_NoMoreMarket
 SystemCanceled_BelowMinimum
 NoChange
 UserModified

OrigOrderId integer. If the order has been changed, shows the original order ID.

OrigClOrdId long integer. If the order has been changed, shows the original client order ID, a
 value that the client can create (much like a purchase order).

EnteredBy integer. The ID of the user who entered the order in this account.

Table continued on page 90

89

GetOrderHistory

Table continued from page 89
IsQuote Boolean. If this order is a quote (rather than an order), returns true, otherwise

 false. Default is false.

InsideAsk real. Best Ask price available at time of entry (generally available to market
 makers).

InsideAskSize real. Quantity available at the best inside ask price (generally available to market
 makers).

InsideBid real. Best Bid price available at time of entry (generally available to market
 makers).

InsideBidSize real. Quantity available at the best inside Bid price (generally available to market
 makers).

LastTradePrice real. The price at which the instrument last traded.

RejectReason string. If the order was rejected, this string value holds the reason.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
 trade for both. Otherwise false.

OMSId integer. The ID of the Order Management System on which the order was
 created.

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOpenQuotes,
GetOrderHistoryByOrderId, GetOrdersHistory, GetOrderStatus, ModifyOrder, SendOrder

90

GetOrderHistoryByOrderId

Retrieves the full order history of a specific order by its order ID, including any changes.

Request

 {

 “OMSId”: 0,

 “OrderId”: 0,

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System where the orders were placed.

OrderId integer. The ID of the order on the Order Management System.

Response

The response returns an array of 1 or more order objects.
[
{
{
“Side”: {

“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”

]
},
“OrderId”: 0,
“Price”: 0,
“Quantity”: 0,
“DisplayQuantity”: 0,
“Instrument”: 0,
“Account”: 0,
“OrderType”: {

“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

]
},
“ClientOrderId”: 0,
“OrderState”: {

“Options”: [
“Unknown”,
“Working”,

Code continued on page 92
91

GetOrderHistoryByOrderId

Code continued from page 91
“Rejected”,

 “Canceled”,

 “Expired”,

 “FullyExecuted”

]

 },

 “ReceiveTime”: 0,

 “ReceiveTimeTicks”: 0,

 “OrigQuantity”: 0,

 “QuantityExecuted”: 0,

 “AvgPrice”: 0,

 “CounterPartyId”: 0,

 “ChangeReason”: {

 “Options”: [

 “Unknown”,

 “NewInputAccepted”,

 “NewInputRejected”,

 “OtherRejected”,

 “Expired”,

 “Trade”,

 “SystemCanceled_NoMoreMarket”,

 “SystemCanceled_BelowMinimum”,

 “NoChange”,

 “UserModified”

]

 },

 “OrigOrderId”: 0,

 “OrigClOrdId”: 0,

 “EnteredBy”: 0,

 “IsQuote”: false,

 “InsideAsk”: 0,

 “InsideAskSize”: 0,

 “InsideBid”: 0,

 “InsideBidSize”: 0,

 “LastTradePrice”: 0,

 “RejectReason”: “”,

 “IsLockedIn”: false,

 “OMSId”: 0,

 },

 }

]

Where:

String

Value

Side string. One of:

 0 Buy

 1 Sell

 2 Short (reserved for future use)

 3 Unknown (error condition)

OrderId long integer. The ID of this order.

Price real. Price of the order.

Quantity real. Quantity of the order.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.

 To display a DisplayQuantity value, an order must be a Limit order with a reserve.

 See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument integer. The ID of the instrument being ordered.

92

Table continued on page 93

 GetOrderHistoryByOrderId

Table continued from page 92
 Account integer. The ID of the account ordering the instrument.

 OrderType string. One of:
 Unknown
 Market
 Limit
 StopMarket
 StopLimit
 TrailingStopMarket
 TrailingStopLimit
 BlockTrade
 See “Order Types” on page 7.

 ClientOrderId long integer. A user-assigned ID for the order (like a purchase-order number
 assigned by a company). ClientOrderId defaults to 0.

 OrderState string. One of:
 Unknown
 Working
 Rejected
 Canceled
 Expired
 FullyExecuted
 An open order will probably not yet be fully executed.

 ReceiveTime long integer. The time at which the system received the quote, in POSIX format.
 See “Time– and Date-Stamp Formats” on page 8.

 ReceiveTimeTicks long integer. The time stamp of the received quote in Microsoft Ticks format. See
 “Time– and Date-Stamp Formats” on page 8.

 OrigQuantity real. If the order has been changed, this value shows the original quantity.

 QuantityExecuted real. This value states the quantity that was executed in the order. It may be the
 same as the quantity of the order; it may be different.

 AvgPrice real. Not currently used.

 CounterPartyId long integer. Shows 0.

 ChangeReason string. If the order has been changed, this value shows the reason. One of:
 Unknown
 NewInputAccepted
 NewInputRejected
 OtherRejected
 Expired
 Trade
 SystemCanceled_NoMoreMarket
 SystemCanceled_BelowMinimum
 NoChange
 UserModified

 OrigOrderId integer. If the order has been changed, shows the original order ID.

 OrigClOrdId long integer. If the order has been changed, shows the original client order ID, a
 value that the client can create (much like a purchase order).

 EnteredBy integer. The ID of the user who entered the order in this account.

Table continued on page 94

93

GetOrderHistoryByOrderId

Table continued from page 93
IsQuote Boolean. If this order is a quote (rather than an order), returns true, otherwise

 false. Default is false.

InsideAsk real. Best Ask price available at time of entry (generally available to market
 makers).

InsideAskSize real. Quantity available at the best inside ask price (generally available to market
 makers).

InsideBid real. Best Bid price available at time of entry (generally available to market
 makers).

IndisdeBidSize real. Quantity available at the best inside Bid price (generally available to market
 makers)..

LastTradePrice real. The price at which the instrument last traded.

RejectReason string. If the order was rejected, this string value holds the reason.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
 trade for both. Otherwise false.

OMSId integer. The ID of the Order Management System on which the order was
 created.

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOpenQuotes,
GetOrderHistory, GetOrdersHistory, GetOrderStatus, ModifyOrder, SendOrder

94

GetOrdersHistory

Retrieves a history of multiple orders (hence, GetOrdersHistory with plural Orders) for the
specified account, order ID, user, instrument, or time stamp, starting at index i, where i is an
integer identifying a specific order in reverse order; that is, the most recent order has an index of 0.
“Depth” is the count of trades to report backwards from StartIndex. All values in the call other
than OMSId are optional.

The owner of the trading venue determines how long to retain order history before archiving.

Note: In this call, “Depth” refers not to the depth of the order book, but to the count of trades to report.

Request

All values other than OMSId are optional.
{

 “OMSId”: 0,

 “AccountId”: 0,

 “ClientOrderId”: 0,

 “OriginalOrderId”: 0,

 “OriginalClientOrderId”: 0,

 “UserId”: 0,

 “InstrumentId”: 0,

 “StartTimestamp”: 0,

 “EndTimestamp”: 0,

 “Depth”: 0,

}
“StartIndex”: 0,

Where:

String

Value

OMSId Integer. The ID of the Order Management System on which the orders took

 place. Required. If no other values are specified, returns the orders associated

 with the default account for the logged-in user on this Order Management

 System.

AccountId Integer. The account ID that made the trades. The logged-in user must be

 associated with this account, although other users also can be associated with

 the account. If no account ID is supplied, the system assumes the default account

 for the logged-in user.

ClientOrderId long integer. A user-assigned ID for the order (like a purchase-order number

 assigned by a company). ClientOrderId defaults to 0.

OriginalOrderId integer. The original ID of the order. If specified, the call returns changed orders

 associated with this order ID.

UserId integer. The ID of the user whose account orders will be returned. If not

 specified, the call returns the orders of the logged-in user.

InstrumentId long integer. The ID of the instrument named in the order. If not specified, the

 call returns orders for all instruments for this account.

Table continued on page 96

95

GetOrdersHistory

Table continued from page 95
StartTimestamp long integer. Date and time at which to begin the orders history, in POSIX

 format, and UTC time zone. If not specified, reverts to the start date of this
 account on the trading venue. See “Time– and Date-Stamp Formats” on page
 8.

EndTimestamp long integer. Date and time at which to end the orders report, in POSIX format,
 and UTC time zone. If not specified, uses the current time. See “Time– and Date-
 Stamp Formats” on page 8.

Depth integer. In this case, the count of orders to return, counting from the StartIndex.
 If not specified, returns all orders between BeginTimeStamp and EndTimeStamp,
 beginning at StartIndex and working backwards.

StartIndex integer. The starting index into the order history, from 0 (the most recent trade)
 and moving backwards in time. If not specified, defaults to 0.

Response

The response returns an array of order objects.
[

{
“Side”: {

“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”

]
},
“OrderId”: 0,
“Price”: 0,
“Quantity”: 0,
“DisplayQuantity”: 0,
“Instrument”: 0,
“Account”: 0,
“OrderType”: {

“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

]
},
“ClientOrderId”: 0,
“OrderState”: {

“Options”: [
“Unknown”,
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”

]
},
“ReceiveTime”: 0,
“ReceiveTimeTicks”: 0,
“OrigQuantity”: 0,
“QuantityExecuted”: 0,
“AvgPrice”: 0,
“CounterPartyId”: 0,
“ChangeReason”: {

Code continued on page 97
96

Code continued from page 96

GetOrdersHistory

“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled_NoMoreMarket”,
“SystemCanceled_BelowMinimum”,
“NoChange”,
“UserModified”

]
},
“OrigOrderId”: 0,
“OrigClOrdId”: 0,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: 0,
“InsideAskSize”: 0,
“InsideBid”: 0,
“InsideBidSize”: 0,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,
“OMSId”: 0,

},
}

]

Where:

String

Value

Side string. One of:

 0 Buy

 1 Sell

 2 Short (reserved for future use)

 3 Unknown (error condition)

OrderId long integer. The ID of this order.

Price real. The unit price of the order.

Quantity real. The quantity of the order.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.

 To display a DisplayQuantity value, an order must be a Limit order with a reserve.

 See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument integer. The ID of the instrument being ordered.

Account integer. The ID of the account ordering the instrument.

OrderType string. One of:

 Unknown

 Market

 Limit

 StopMarket

 StopLimit

 TrailingStopMarket

 TrailingStopLimit

 BlockTrade

 See “Order Types” on page 7.

Table continued on page 98
97

GetOrdersHistory

Table continued from page 97
 ClientOrderId long integer. A user-assigned ID for the order (like a purchase-order number
 assigned by a company). ClientOrderId defaults to 0.

 OrderState string. One of:
 Unknown
 Working
 Rejected
 Canceled
 Expired
 FullyExecuted
 An open order will not be fully executed.

 ReceiveTime long integer. The time and date that the order was received, in POSIX format
 and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 ReceiveTimeTicks long integer. Identifies the time and date that the order was received in Microsoft
 ticks format, and UTC time zone. See “Time– and Date-Stamp Formats” on page
 8.

 OrigQuantity real. The original quantity in the order (may be different from the amount
 executed).

 QuantityExecuted real. This value states the quantity that was executed in the order (may be
 different from Quantity or OrigQuantity.

 AvgPrice real. Not currently used.

 CounterPartyId long integer. Shows 0.

 ChangeReason string. If the order has been changed, this value shows the reason. One of:
 Unknown
 NewInputAccepted
 NewInputRejected
 OtherRejected
 Expired
 Trade
 SystemCanceled_NoMoreMarket
 SystemCanceled_BelowMinimum
 NoChange
 UserModified

 OrigOrderId integer. If the order has been changed, shows the original order ID.

 OrigClOrdId long integer. If the order has been changed, shows the original client order ID, a
 value that the client can create (much like a purchase order).

 EnteredBy integer. The ID of the user who entered the order in this account.

 IsQuote Boolean. If this order is a quote (rather than an order), returns true, otherwise
 false. Default is false.

 InsideAsk real. Best Ask price available at time of entry (generally available to market
 makers).

 InsideAskSize real. Quantity available at the best inside ask price (generally available to market
 makers).

 InsideBid real. Best Bid price available at time of entry (generally available to market
 makers).

Table continued on page 99
98

 GetOrdersHistory

Table continued from page 98
 IndisdeBidSize real. Quantity available at the best inside Bid price (generally available to market
 makers)..

 LastTradePrice real. The price at which the instrument last traded.

 RejectReason string. If the order was rejected, this string value holds the reason.

 IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
 trade for both. Otherwise false.

 OMSId integer. The ID of the Order Management System on which the order was
 created.

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOpenQuotes,
GetOrderHistory, GetOrderHistoryByOrderId, GetOrderStatus, ModifyOrder, SendOrder

99

GetOrdersHistory

100

GetOrderStatus

Retrieves the status information for a single order.

Request

{
 “OMSId”: 0,

 “AccountId”: 0,

 “OrderId”: 0,

 }

Where:

String

Value

OMSId Integer. The ID of the Order Management System on which the order was placed.

AccountId integer. The ID of the account under which the order was placed.

OrderId integer. The ID of the order whose status will be returned.

Response

The response returns a single order object.
{
“Side”: {

“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”

]
},
“OrderId”: 0,
“Price”: 0,
“Quantity”: 0,
“DisplayQuantity”: 0,
“Instrument”: 0,
“Account”: 0,
“OrderType”: {

“Options”: [
“Unknown”,
“Market”,
“Limit”,
“StopMarket”,
“StopLimit”,
“TrailingStopMarket”,
“TrailingStopLimit”,
“BlockTrade”

]
},
“ClientOrderId”: 0,
“OrderState”: {

“Options”: [
“Unknown”,

Code continued on page 102
101

GetOrderStatus

Code continued from page 101
“Working”,
“Rejected”,
“Canceled”,
“Expired”,
“FullyExecuted”

]
},
“ReceiveTime”: 0,
“ReceiveTimeTicks”: 0,
“OrigQuantity”: 0,
“QuantityExecuted”: 0,
“AvgPrice”: 0,
“CounterPartyId”: 0,
“ChangeReason”: {

“Options”: [
“Unknown”,
“NewInputAccepted”,
“NewInputRejected”,
“OtherRejected”,
“Expired”,
“Trade”,
“SystemCanceled_NoMoreMarket”,
“SystemCanceled_BelowMinimum”,
“NoChange”,
“UserModified”

]
},
“OrigOrderId”: 0,
“OrigClOrdId”: 0,
“EnteredBy”: 0,
“IsQuote”: false,
“InsideAsk”: 0,
“InsideAskSize”: 0,
“InsideBid”: 0,
“InsideBidSize”: 0,
“LastTradePrice”: 0,
“RejectReason”: “”,
“IsLockedIn”: false,
“OMSId”: 0,

}

Where:

String Value

Side string. The side of this order. One of:
 0 Buy
 1 Sell
 2 Short (reserved for future use)
 3 Unknown (error condition)

OrderId long integer. The ID of the order. The response echoes the order ID from the
 request.

Price real. The price at which the order was placed.

Quantity real. The quantity of the instrument being ordered.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.
 To display a DisplayQuantity value, an order must be a Limit order with a reserve.
 See “Display Quantity” on page 8, and “Order Types” on page 7.

Instrument integer. The ID of the instrument traded in the order.

Account integer. The ID of the account that placed the order.
Table continued on page 103

102

GetOrderStatus

Table continued from page 102

OrderType string. One of:
 Unknown
 Market
 Limit
 StopMarket
 StopLimit
 TrailingStopMarket
 TrailingStopLimit
 BlockTrade
 See “Order Types” on page 7.

ClientOrderID long integer. A user-assigned ID for the order (like a purchase-order number
 assigned by a company). ClientOrderId defaults to 0.

OrderState string. One of:
 0 Unknown
 2 Working
 3 Rejected
 4 Canceled
 5 Expired
 6 FullyExecuted

ReceiveTime long integer. The time and date that the order was received, in POSIX format
 and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

ReceiveTimeTicks long integer. Identifies the time and date that the order was received in Microsoft
 ticks format, and UTC time zone. See “Time– and Date-Stamp Formats” on page
 8.

OrigQuantity real. The original quantity of the order. The actual amount traded may be
 different.

QuantityExecuted real. The quantity executed in this order. May be different from the amount
 ordered (Quantity).

AvgPrice real. Not currently used.

CounterPartyId long integer. Shows 0.

ChangeReason string. The reason that the order may have been changed from the original. One
 of:

0 Unknown
1 NewInputAccepted
2 NewInputRejected
3 OtherRejected
4 Expired
5 Trade
6 SystemCanceled_NoMoreMarket
7 SystemCanceled_BelowMinimum
8 NoChange
9 UserModified

OrigOrderID integer. The ID of the original order, if it has been changed.

OrigClOrId long integer. If the order has been changed, shows the original client order ID, a
 value that the client can create (much like a purchase order). The default value is
 0.

EnteredBy integer. The ID of the user who originally entered the order.

Table continued on page 104

103

GetOrderStatus

Table continued from page 103
IsQuote Boolean. Returns true if the order is a quote, else returns false. Default is false.

 See “Quotes and Orders” on page 5.

InsideAsk real. Ask price among market makers.

InsideAskSize real. Ask quantity among market makers.

InsideBid real. Bid price among market makers.

InsideBidSize real. Bid quantity among market makers.

LastTradePrice real. The price at which the instrument traded immediately before this trade.

RejectReason string. If the trade was rejected, this string holds the reason.

IsLockedIn Boolean. True if both parties to a block trade agree that one party will report the
 trade for both. Otherwise false.

OMSId integer. ID of the Order Management System on which the trades being reported
 on occurred.

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOpenQuotes,
GetOrderHistory, GetOrderHistoryByOrderId, GetOrdersHistory, ModifyOrder, SendOrder

104

GetProduct
No authentication required

Retrieves the details about a specific product on the trading venue. A product is an asset that is
tradable or paid out. See “Products and Instruments” on page 4 for more information about the
difference between these two items.

Request

{
“OMSId”: 1,
“ProductId”: 1

}

Where:

String

Value

OMSId integer. The ID of the Order Management System that includes the product.

ProductId long integer. The ID of the product (often a currency) on the specified Order

 Management System.

Response

Unsuccessful response:
{
“OMSId”: 0,
“ProductId”: 0,
“Product”: “”,
“ProductFullName”: “”,
“ProductType”: {
“Options”: [
“Unknown”,
“NationalCurrency”,
“CryptoCurrency”,
“Contract”

]
 },

 “DecimalPlaces”: 0,

 “TickSize”: 0,

 “NoFees”: false,

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System that offers the product.

ProductId long integer. The ID of the product.

105

GetProduct

Product string. “Nickname” or shortened name of the product. For example, NZD (New
 Zealand Dollar).

ProductFullName string. Full and official name of the product. For example, New Zealand Dollar.

ProductType string. The nature of the product. One of:
 0 Unknown (an error condition)
 1 NationalCurrency
 2 CryptoCurrency
 3 Contract

DecimalPlaces integer. The number of decimal places in which the product is divided. For
 example, US Dollars are divided into 100 units, or 2 decimal places. Other
 products may be different. Burundi Francs use 0 decimal places and the Rial
 Omani uses 3.

TickSize integer. Minimum tradable quantity of the product. See also GetInstrument,
 where this value is called QuantityIncrement. For example, with a US Dollar, the
 minimal tradable quantity is $0.01.

NoFees Boolean. Shows whether trading the product incurs fees. The default is false;
 that is, if NoFees is false, fees will be incurred. If NoFees is true, no fees are
 incurred.

See Also

GetAccountPositions, GetInstrument, GetInstruments, GetProducts

106

GetProducts
No authentication required

Returns an array of products available on the trading venue. A product is an asset that is
tradable or paid out. For more information about the difference between products and
instruments, see “Products and Instruments” on page 4.

Request

 {

 “OMSId”: 1,

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System for which the array of available

 products and currencies will be returned.

Response

The response returns an array of objects, one object for each product available on the
Order Management System.

[
{
“OMSId”: 0,
“ProductId”: 0,
“Product”: “”,
“ProductFullName”: “”,
“ProductType”: {
“Options”: [

“Unknown”,
“NationalCurrency”,
“CryptoCurrency”,
“Contract”

]
},

 “DecimalPlaces”: 0,

 “TickSize”: 0,

 “NoFees”: false,

 },

]

Where:

String

Value

OMSId integer. The ID of the Order Management System that offers the product.

ProductId long integer. The ID of the product.

107

GetProducts

Product string. “Nickname” or shortened name of the product. For example, NZD (New
 Zealand Dollar).

ProductFullName string. Full and official name of the product. For example, New Zealand Dollar.

ProductType string. The nature of the product. One of:
 0 Unknown (an error condition)
 1 NationalCurrency
 2 CryptoCurrency
 3 Contract

DecimalPlaces integer. The number of decimal places in which the product is divided. For
 example, US Dollars are divided into 100 units, or 2 decimal places. Other
 products may be different. Burundi Francs use 0 decimal places and the Rial
 Omani uses 3.

TickSize integer. Minimum tradable quantity of the product. See also GetInstrument,
 where this value is called QuantityIncrement. For example, with a US Dollar, the
 minimal tradable quantity is $0.01.

NoFees Boolean. Shows whether trading the product incurs fees. The default is false;
 that is, if NoFees is false, fees will be incurred. If NoFees is true, no fees are
 incurred.

See Also

GetAccountPositions, GetInstrument, GetInstruments, GetProduct

108

ModifyOrder

Reduces an order’s quantity without losing priority in the order book. An order’s quantity can
only be reduced. The other call that can modify an order — CancelReplaceOrder — resets order
book priority, but you can use it to increase an order.

Note: ModifyOrder does not surrender or reset order book priority.

Request

{
“OMSId”: 0,
“OrderId”: 0,
“InstrumentId”: 0,
“PreviousOrderRevision”: 0,

“Quantity”: 0

}

Where:

String

Value

OMSId integer. The ID of the Order Management System where the original order was

 placed.

OrderId long integer. The ID of the order to be modified. The ID was supplied by the

 server when the order was created.

InstrumentId integer. The ID of the instrument traded in the order.

PreviousOrderRevision integer. The order revision number at the time you make the modification order.

 This ensures that you have the latest order state at the time you make the

 request.

Quantity real. The new quantity of the order. This value can only be reduced from a

 previous quantity.

Response

{
“result”: false,
“errormsg”: “”,
“errorcode”: 0,
“detail”: “”,

}

115

ModifyOrder

Where:

String

Value

result Boolean. The successful receipt of a modify request returns true; otherwise,

 returns false. This is the acknowledgement of receipt of the request to modify, not

 a confirmation that the modification has taken place. Monitor the modification with

 GetOpenOrders or GetOrderHistory.

errormsg string. A successful receipt of a modify request returns null; the errormsg

 parameter for an unsuccessful request returns one of the following messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

errorcode integer. The receipt of a successful request to modify returns 0. An unsuccessful

 request returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOrderHistory,
GetOrderHistoryByOrderId, GetOrdersHistory, GetOrderStatus, SendOrder

116

SendOrder

Creates an order. Anyone submitting an order should also subscribe to the various market data
and event feeds, or call GetOpenOrders or GetOrderStatus to monitor the status of the order. If
the order is not in a state to be executed, GetOpenOrders will not return it.

Request

{
“AccountId”: 5,
“ClientOrderId”: 99,
“Quantity”: 1,
“DisplayQuantity”: 0,
“UseDisplayQuantity”: true,
“LimitPrice”: 95,
“OrderIdOCO”: 0,
“OrderType”: 2,
“PegPriceType”: 1,
“InstrumentId”: 1,
“TrailingAmount”: 1.0,
“LimitOffset”: 2.0,
“Side”: 0,
“StopPrice”: 96,

“TimeInForce”: 1,

“OMSId”: 1,

}

Where:

String

Value

AccountId integer. The ID of the account placing the order.

ClientOrderId long integer. A user-assigned ID for the order (like a purchase-order number

 assigned by a company). This ID is useful for recognizing future states related to

 this order. ClientOrderId defaults to 0.

Quantity real. The quantity of the instrument being ordered.

DisplayQuantity real. The quantity available to buy or sell that is publicly displayed to the market.

 To display a DisplayQuantity value, an order must be a Limit order with a reserve.

 See “Display Quantity” on page 8.

UseDisplayQuantity Boolean. If you enter a Limit order with a reserve, you must set

 UseDisplayQuantity to true. See “Display Quantity” on page 8 for more

 information about how the system users the DisplayQuantity value.

LimitPrice real. The price at which to execute the order, if the order is a Limit order.

OrderIdOCO integer. One Cancels the Other — If this order is order A, OrderIdOCO refers to

 the order ID of an order B (which is not the order being created by this call). If

 order B executes, then order A created by this call is canceled. You can also set

 up order B to watch order A in the same way, but that may require an update to

 order B to make it watch this one, which could have implications for priority in the

 order book. See CancelReplaceOrder and ModifyOrder.

Table continued on page 118

117

SendOrder

Table continued from page 117
OrderType integer. The type of this order, as expressed in integer format. See “Order Types”

 on page 7 for an explanation of each type. One of:
 1 Market
 2 Limit
 3 StopMarket
 4 StopLimit
 5 TrailingStopMarket
 6 TrailingStopLimit
 7 BlockTrade.

PegPriceType integer. When entering a stop/trailing order, set PegPriceType to an integer that
 corresponds to the type of price that pegs the stop:
 1 Last
 2 Bid
 3 Ask
 4 Midpoint

InstrumentId long integer. The ID of the instrument being traded in the order.

TrailingAmount real. The offset by which to trail the market in one of the trailing order types.
 Set this to the current price of the market to ensure that the trailing offset is the
 amount intended in a fast-moving market. See “Order Types” on page 7.

LimitOffset real. The amount by which a trailing limit order is offset from the activation price.

Side integer. The side of the trade represented by this order. One of:
 0 Buy
 1 Sell
 2 Short (reserved for future use)
 3 Unknown (error condition)

StopPrice real. The price at which to execute the order, if the order is a Stop order (either
 buy or sell).

TimeInForce integer. The period during which the order is executable.
 0 Unknown (error condition)
 1 GTC good ’til canceled
 3 IOC immediate or cancelled
 4 FOK fill or kill — fill the order immediately, or cancel it immediately
 There may be other settings for TimeInForce depending on the trading venue.

OMSId integer. The ID of the Order Management System on which the order is being
 placed.

Response

{
“status”:”Accepted”,
“errormsg”:””,
“OrderId”: 123 // Server order id

}

118

SendOrder

Where:

String

Value

status string. If the order is accepted by the system, it returns 0.

 0 Accepted

 1 Rejected

errormsg string. Any error message the server returns.

OrderId long integer. The ID assigned to the order by the server. This allows you to track

 the order.

See Also

CancelAllOrders, CancelOrder, CancelReplaceOrder, GetOpenOrders, GetOrderHistory,
GetOrderHistoryByOrderId, GetOrdersHistory, GetOrderStatus, ModifyOrder

119

SendOrder

120

UpdateQuote

Updates an existing quote. Quoting is not enabled for the retail end user of the Coinext
software. Only registered market participants or market makers may quote. See
CancelReplaceOrder.

Note: UpdateQuote resets the quote’s priority in the order book.

Request

{
 “OMSId”: 0,

 “AccountId”: 0,

 “InstrumentId”: 0,

 “BidQuoteId”: 0,

 “Bid”: 0,

 “BidQty”: 0,

 “AskQuoteId”: 0,

 “Ask”: 0,

 “AskQty”: 0,

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System where the quote is located.

AccountId integer. The ID of the account whose quote will be updated.

InstrumentId long integer. The ID of the instrument whose quote is being updated.

BidQuoteId integer. The ID of the original bid quote being updated.

Bid real. The new currency amount of the bid quote.

BidQty real. The new quantity of the bid quote.

AskQuoteId integer. The ID of the original ask quote being updated.

Ask real. The new currency amount of the ask quote.

AskQty real. The new quantity of the ask quote.

Response

{
“BidQuoteId”: 0,
“BidResult”: “{
“result”: true,
“errormsg”: “”,
“errorcode”: 0,

121

UpdateQuote

“detail”: “”,

}”,
“AskQuoteId”: 0,
“AskResult”: “{

 “result”: true,

 “errormsg”: “”,

 “errorcode”: 0,

 “detail”: “”,

 }”

 }

Where:

String

Value

BidQuoteId integer. The ID of the Bid quote being updated.

BidResult string. Returns a response object for Bid.

AdkQuoteId integer. The ID of the Ask quote being updated.

AskResult string. Returns a response object for Ask.

Response objects for both BidResult and AskResult:

String Value

result Boolean. A successful receipt of the update returns true; and unsuccessful
 receipt of the update (an error condition) returns false.

errormsg string. A successful receipt of the update returns null; the errormsg string for an
 unsuccessful receipt returns one of the following messages:
 Not Authorized (errorcode 20)
 Invalid Request (errorcode 100)
 Operation Failed (errorcode 101)
 Server Error (errorcode 102)
 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the update returns 0. An unsuccessful receipt
 returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

See Also

CancelAllOrders, CancelOrder, CancelQuote, CancelReplaceOrder, CreateQuote,
GetOpenOrders, GetOpenQuotes, ModifyOrder, SendOrder

122

Reports

CancelUserReport

You can generate or schedule a variety of reports through this API on demand. This call cancels
a scheduled report by its report ID.

Request

GetUserReportTickets can provide a list of GUIDs for scheduled reports.
 {

 “UserReportId”: guid-as-a-string //GUID not GUIDE

 }

Where:

String

Value

UserReport string. The GUID is a globally unique ID string that identifies the user report to

 be cancelled. The Order Management System provides this ID when you create

 a report.

Response

The response to CancelUserReport verifies that the call was received, not that the
user report has been canceled successfully. Individual event updates to the user show
cancellations. To verify that a report has been canceled, call GetUserReportTickets or
GetUserReportWriterResultRecords.

{
 “result”: true,

 “errormsg”: “”,

 “errorcode”: 0,

 “detail”: “”,

 }

Where:

String

Value

result Boolean. A successful receipt of the cancellation returns true; and unsuccessful

 receipt of the cancellation (an error condition) returns false.

errormsg string. A successful receipt of the cancellation returns null; the errormsg

 parameter for an unsuccessful receipt returns one of the following messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the cancellation returns 0. An unsuccessful

 receipt returns one of the errorcodes shown in the errormsg list.

Table continued on page 126

125

CancelUserReport

Table continued from page 125

detail string. Message text that the system may send. Usually null.

See Also

GetUserReportTickets, GetUserReportWriterResultRecords, ScheduleTradeActivityReport,
ScheduleTransactionActivityReport, ScheduleTreasuryActivityReport

126

GenerateTradeActivityReport

Creates an immediate report on historical trade activity on a specific Order Management System for
a list of accounts during a specified time interval.

The accounts listed in the request must all be associated with the logged-in user on the
specified OMS (the logged-in user may not be the only user of each account).

The Trade Activity Report is delivered as a comma-separated (CSV) file. For specific CSV
formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request

{
“accountIdList”: [
0 // one or more Account IDs

],

 “omsId”: 0,

 “startTime”: “0001-01-01T05:00:00Z”.

 “endTime”: “0001-01-01T05:00:00Z”,

 }

Where:

String

Value

accountIdList integer array. A comma-delimited array of one ore more account IDs, each valid

 on a single Order Management System for the authenticated user. The account

 user may not be the only user of the account. See “Permissions” on page 4.

omsId integer. The ID of the Order Management System on which the array of account

 IDs exist.

startTime string. startTime identifies the time and date for the historic beginning of the

 trade activity report in ISO 8601 format and UTC time zone. “Time– and Date-

 Stamp Formats” on page 8.

endTime string. endTime identifies the time and date for the historic end of the trade

 activity report in ISO 8601 format and UTC time zone. See “Time– and Date-

 Stamp Formats” on page 8.

Response

Similar objects are returned for Generate~Report and Schedule~Report calls. As a result, for
an on-demand Generate~Report call, some string-value pairs such as initialRunTime may return the
current time and ReportFrequency will always return OnDemand because the report is only
generated once and on demand.

{
“RequestingUser”: 0,
“OMSId”: 0,
“reportFlavor”: {

“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

Code continued on page 128
127

GenerateTradeActivityReport

Code continued from page 127
]

},
“createTime”: “0001-01-01T05:00:00Z”,
“initialRunTime”: “0001-01-01T05:00:00Z”,
“intervalStartTime”: “0001-01-01T05:00:00Z”,
“intervalEndTime”: “0001-01-01T05:00:00Z”,
“RequestStatus”: {

“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

]
},
“ReportFrequency”: {

“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

]
},
“intervalDuration”: 0,
“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“accountIds”: [
0

],
}

Where:

String

Value

RequestingUser integer. The User ID of the person requesting the trade activity report. This

 confirms the ID of the authenticated user who made the request by returning it as

 part of the response.

OMSId integer. The ID of the Order Management System on which the trade activity

 report will be run.

reportFlavor string. The type of report to be generated. One of:

 TradeActivity

 Transaction

 Treasury

 The reportFlavor string confirms the nature of the call.

createTime string. The time and date on which the request for the trade activity report was

 made, in ISO 8601 format and the UTC time zone. See “Time– and Date-Stamp

 Formats” on page 8.

initialRunTime string. The time and date at which the trade activity report was first run,

 in ISO 8601 format and the UTC time zone. Returns the current time for a

 Generate~Report call. See “Time– and Date-Stamp Formats” on page 8.

intervalStartTime string. The start of the period that the report will cover, in ISO 8601 format. See

 “Time– and Date-Stamp Formats” on page 8.

128 Table continued on page 128

 GenerateTradeActivityReport

Table contnued from page 128

 intervalEndTime string. The end of the period that the report will cover, in ISO 8601 format. See
 “Time– and Date-Stamp Formats” on page 8.

 requestStatus string. The status of the request for the trade activity report. A Generate~Report
 request will always return Submitted. See “Request Status” on page 10. Each
 request returns one of:
 Submitted
 Validating
 Scheduled
 InProgress
 Completed
 Aborting
 Aborted
 UserCancelled
 SysRetired
 UserCancelledPending

 ReportFrequency string. When the report runs. For a Generate~Report call, this is always
 OnDemand.
 OnDemand
 Hourly
 Daily
 Weekly
 Monthly
 Annually

 intervalDuration long integer. The period that the report covers relative to the run date, expressed
 in Microsoft ticks format. The Generate~Report call requires a start time and
 an end time. The Coinext software calculates the difference between them
 as intervalDuration. See ““Time– and Date-Stamp Formats” on page 8. For
 example, say that you specify a 90-day start-date-to-end-date window for a
 report. The intervalDuration value returns a value equivalent to 90 days. If you
 have called Generate~Report, that value simply confirms the length of time that
 the on-demand report covers.

 RequestId string. The ID of the original request. Request IDs are long strings unique within
 the Order Management Systsem.

 lastInstanceId string. For scheduled reports, the report ID of the most recent previously run
 report. Will be null for a Generate~Report call, because generated reports are
 on-demand.

 accountId integer array. A comma-delimited array of account IDs whose trades are
 reported in the trade activity report.

See Also

GenerateTransactionActivityReport, GenerateTreasuryActivityReport,
GetUserReportTickets, GetUserReportWriterResultRecords, ScheduleTradeActivityReport,
ScheduleTransactionActivityReport, ScheduleTreasuryActivityReport

129

GenerateTradeActivityReport

130

GenerateTransactionActivityReport

Generates an immediate report on account transaction activity for a list of accounts under a single
Order Management System during a specified time. A logged-in and authenticated user can only
generate a transaction activity report for accounts associated with the user. There can be multiple
users associated with an account however; see “Permissions” on page 4.

The Transaction Activity Report is delivered as a comma-separated (CSV) file. For specific CSV
formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request

{
“accountIdList”: [
0

],

 “omsId”: 0,

 “startTime”: “0001-01-01T05:00:00Z”,

 “endTime”: “0001-01-01T05:00:00Z”,

 }

Where:

String

Value

accountIdList integer array. A comma-deliminted array of one ore more account IDs, each valid

 on the same Order Management System on which the user is authenticated.

omsId integer. The ID of the Order Management System on which the array of account

 IDs exist.

startTime string. startTime identifies the time and date for the beginning of the transaction

 activity report, in ISO 8601 format. See “Time– and Date-Stamp Formats” on

 page 8.

endTime string. endTime identifies the time and date for the end of the transaction activity

 report, in ISO 8601 format. See “Time– and Date-Stamp Formats” on page 8.

Response

Similar objects are returned for Generate~Report and Schedule~Report calls. As a result, for
an on-demand Generate~Report call, some string-value pairs such as initialRunTime may return the
current time and ReportFrequency will always return OnDemand because the report is only
generated once and on demand.

Code continued on page 132

{

“RequestingUser”: 0,
“OMSId”: 0,
“reportFlavor”: {

“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

]
},

131

GenerateTransactionActivityReport

Code continued from page 131
“createTime”: “0001-01-01T05:00:00Z”,
“initialRunTime”: “0001-01-01T05:00:00Z”,
“intervalStartTime”: “0001-01-01T05:00:00Z”,
“intervalEndTime”: “0001-01-01T05:00:00Z”,
“RequestStatus”: {

“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

]
},
“ReportFrequency”: {

“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

]
},
“intervalDuration”: 0,
“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“accountIds”: [
0

],
}

Where:

String

Value

RequestingUser integer. The User ID of the person requesting the transaction activity report. This

 confirms the ID of the authenticated user who made the request by returning it as

 part of the response..

OMSId integer. The ID of the Order Management System on which the transaction

 activity report will be run.

reportFlavor string. The type of report to be generated. One of:

 TradeActivity

 Transaction

 Treasury

 The reportFlavor string confirms the nature of the call.

createTime string. The time and date on which the request for the trade activity report was

 made, in ISO 8601 format and the UTC time zone. See “Time– and Date-Stamp

 Formats” on page 8.

initialRunTime string. The time and date at which the trade activity report was first run,

 in ISO 8601 format and the UTC time zone. Returns the current time for a

 Generate~Report call. See “Time– and Date-Stamp Formats” on page 8.

intervalStartTime string. The start of the period that the report will cover, in ISO 8601 format. See

 “Time– and Date-Stamp Formats” on page 8.

132 Table continued on page 132

 GenerateTransactionActivityReport

Table continued from page 132
 intervalEndTime string. The end of the period that the report will cover, in ISO 8601 format. See
 “Time– and Date-Stamp Formats” on page 8.

 requestStatus string. The status of the request for the trade activity report. A Generate~Report
 request will always return Submitted. See “Request Status” on page 10. Each
 request returns one of:
 Submitted
 Validating
 Scheduled
 InProgress
 Completed
 Aborting
 Aborted
 UserCancelled
 SysRetired
 UserCancelledPending

 ReportFrequency string. When the report runs. For a Generate~Report call, this is always
 OnDemand.
 OnDemand
 Hourly
 Daily
 Weekly
 Monthly
 Annually

 intervalDuration long integer. The period that the report covers relative to the run date, expressed
 in Microsoft ticks format. The Generate~Report call requires a start time and
 an end time. The Coinext software calculates the difference between them
 as intervalDuration. See “Time– and Date-Stamp Formats” on page 8. For
 example, say that you specify a 90-day start-date-to-end-date window for a
 report. The intervalDuration value returns a value equivalent to 90 days. If you
 have called Generate~Report, that value simply confirms the length of time that
 the on-demand report covers.

 RequestId string. The ID of the original request. Request IDs are long strings unique within
 the Order Management Systsem.

 lastInstanceId string. For scheduled reports, the report ID of the most recent previously run
 report. Will be null for a Generate~Report call, because generated reports are
 on-demand.

 accountIds integer array. A comma-delimited array of account IDs whose trades are
 reported in the trade activity report.

See Also

GenerateTradeActivityReport, GenerateTreasuryActivityReport,
GetUserReportTickets, GetUserReportWriterResultRecords, ScheduleTradeActivityReport,
ScheduleTransactionActivityReport, ScheduleTreasuryActivityReport

133

GenerateTransactionActivityReport

134

GenerateTreasuryActivityReport

Generates an immediate report on all company treasury activities related to the trading venue
— withdrawals, transfers, and funds movements unrelated to trading — over a specified period.
A logged-in and authenticated user can only generate a transaction activity report for accounts
associated with the user. There can be multiple users associated with an account; see
“Permissions” on page 4.

The Trade Activity Report is delivered as a comma-separated (CSV) file. For specific CSV
formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request

{
“accountIdList”: [
0

],

 “omsId”: 0,

 “startTime”: “0001-01-01T05:00:00Z”,

 “endTime”: “0001-01-01T05:00:00Z”,

 }

Where:

String

Value

accountIdList integer array. A comma-delimited array of one ore more account IDs, each valid

 on a single Order Management System for the authenticated user. The account

 user may not be the only user of the account. See “Permissions” on page 4.

omsId integer. The ID of the Order Management System on which the array of account

 IDs exist.

startTime string. startTime identifies the time and date for the historic beginning of the

 trade activity report in ISO 8601 format and UTC time zone. See “Time– and

 Date-Stamp Formats” on page 8.

endTime string. endTime identifies the time and date for the historic end of the trade

 activity report in ISO 8601 format and UTC time zone. See “Time– and Date-

 Stamp Formats” on page 8.

Response

Similar objects are returned for Generate~Report and Schedule~Report calls. As a result, for
an on-demand Generate~Report call, some string-value pairs such as initialRunTime may return the
current time and ReportFrequency will always return OnDemand because the report is only
generated once and on demand.

{
“OMSId”: 0,
“reportFlavor”: {

“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

Code continued on page 136
135

GenerateTreasuryActivityReport

Code continued from page 135
]

},
“createTime”: “0001-01-01T05:00:00Z”,
“initialRunTime”: “0001-01-01T05:00:00Z”,
“intervalStartTime”: “0001-01-01T05:00:00Z”,
“intervalEndTime”: “0001-01-01T05:00:00Z”,
“RequestStatus”: {

“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

]
},
“ReportFrequency”: {

“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

]
},
“intervalDuration”: 0,
“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“accountIds”: [
0

],
}

Where:

String Value

RequestingUser integer. The User ID of the person requesting the treasury activity report. This
 confirms the ID of the authenticated user who made the request by returning it as
 part of the response.

OMSId integer. The ID of the Order Management System on which the transaction
 activity report will be run.

reportFlavor string. The type of report to be generated. One of:
 TradeActivity
 Transaction
 Treasury
 The reportFlavor string confirms the nature of the call.

createTime string. The time and date on which the request for the trade activity report was
 made, in ISO 8601 format and the UTC time zone. See “Time– and Date-Stamp
 Formats” on page 8.

initialRunTime string. The time and date at which the trade activity report was first run,
 in ISO 8601 format and the UTC time zone. Returns the current time for a
 Generate~Report call. See “Time– and Date-Stamp Formats” on page 8.

intervalStartTime string. The start of the period that the report will cover, in ISO 8601 format. See
 “Time– and Date-Stamp Formats” on page 8.

136 Table continued on page 137

 GenerateTreasuryActivityReport

Table continued from page 136
 intervalEndTime string. The end of the period that the report will cover, in ISO 8601 format. See
 “Time– and Date-Stamp Formats” on page 8.

 requestStatus string. The status of the request for the trade activity report. A Generate~Report
 request will always return Submitted. See “Request Status” on page 10. Each
 request returns one of:
 Submitted
 Validating
 Scheduled
 InProgress
 Completed
 Aborting
 Aborted
 UserCancelled
 SysRetired
 UserCancelledPendin

 ReportFrequency string. When the report runs. For a Generate~Report call, this is always
 OnDemand.
 OnDemand
 Hourly
 Daily
 Weekly
 Monthly
 Annually

 intervalDuration long integer. The period that the report covers relative to the run date, expressed
 in Microsoft ticks format. The Generate~Report call requires a start time and
 an end time. The Coinext software calculates the difference between them
 as intervalDuration. See “Time– and Date-Stamp Formats” on page 8. For
 example, say that you specify a 90-day start-date-to-end-date window for a
 report. The intervalDuration value returns a value equivalent to 90 days. If you
 have called Generate~Report, that value simply confirms the length of time that
 the on-demand report covers.

 RequestId string. The ID of the original request. Request IDs are long strings unique within
 the Order Management Systsem.

 lastInstanceId string. For scheduled reports, the report ID of the most recent previously run
 report. Will be null for a Generate~Report call, because generated reports are
 on-demand.

 accountIds integer array. A comma-delimited array of account IDs whose trades are
 reported in the trade activity report.

See Also

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GetUserReportTickets, ScheduleTradeActivityReport, GenerateTreasuryActivityReport, and
ScheduleTreasuryActivityReport.

137

GenerateTreasuryActivityReport

138

GetUserReportTickets

Returns an array of user report tickets for a specific user ID. A user report ticket identifies a
report requested or subscribed to by a user. Reports can run once or periodically.

Request

{
“UserId”: 1

}

Where:

String Value

UserId integer. The ID of the user whose user report tickets will be returned.

Response

Code continued on page 140

The response returns an array of tickets, each ticket representing a report.

[
{
{
“RequestingUser”: 0,
“OMSId”: 0,
“reportFlavor”: {

“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

},
“createTime”: “0001-01-01T05:00:00Z”,
“initialRunTime”: “0001-01-01T05:00:00Z”,
“intervalStartTime”: “0001-01-01T05:00:00Z”,
“intervalEndTime”: “0001-01-01T05:00:00Z”,
“RequestStatus”: {

“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

]
},
“ReportFrequency”: {

“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

139

GetUserReportTickets

Code continued from page 139
]

},
“intervalDuration”: 0,
“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“accountIds”: [
0

],
},

}
]

Where:

String

Value

RequestingUser integer. The User ID of the person requesting the report.

OMSId integer. The ID of the Order Management System on which the report was run.

reportFlavor string. The type of report. One of:

 TradeActivity

 Transaction

 Treasury

 For more information, see “Report Types” on page 9.

createTime string. The time and date on which the request for the report was made, in ISO

 8601 format, and UTC time zone. See “Time– and Date-Stamp Formats” on page

 8.

initialRunTime string. The time and date at which the report was first run, in ISO 8601 format,

 and UTC time zone. See ““Time– and Date-Stamp Formats” on page 8.

intervalStartTime string. The start of the period that the report will cover, in ISO 8601 format, and

 UTC time zone. See ““Time– and Date-Stamp Formats” on page 8.

intervalEndTime string. The end of the period that the report will cover, in ISO 8601 format, and

 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

requestStatus string. The status of the request for the report. See “Request Status” on page

 10. Each status returns one of:

 Submitted

 Validating

 Scheduled

 InProgress

 Completed

 Aborting

 Aborted

 UserCancelled

 SysRetired

 UserCancelledPending

ReportFrequency string. When the report runs.

 OnDemand

 Hourly

 Daily

 Weekly

 Monthly

 Annually

140 Table continued on page 141

 GetUserReportTickets

Table continued from page 140
 intervalDuration long integer. The period that the report looks backward relative to the run
 date. The system calculates intervalDuration between intervalStartTime and
 intervalEndTime and reports it in the form of Microsoft ticks. (See “Time– and
 Date-Stamp Formats” on page 8.) For example, say that you specify a 90-day
 start-date-to-end-date window for a report. The intervalDuration value returns a
 value equivalent to 90 days and represents the backward-looking period of the
 report. Say that you have set a weekly report to look back 90 days. When it runs
 again in a week’s time, it again looks back 90 days — but now those 90 days are
 offset by a week from the first report.

 RequestId string. The ID of the original request. Request IDs are long strings unique within
 the Order Management System.

 lastInstanceId string. For scheduled reports, the report ID of the most recent previously run
 report. Will be null for a Generate~Report call, because generated reports are
 on-demand.

 accountIds integer array. A comma-delimited array of account IDs whose trades are
 reported in the trade activity report.

See Also

GenerateTradeActivityReport,
GenerateTransactionActivityReport, GenerateTreasuryActivityReport,
GetUserReportWriterResultRecords, ScheduleTradeActivityReport,
ScheduleTreasuryActivityReport, ScheduleTreasuryActivityReport.

141

GetUserReportTickets

142

GetUserReportWriterResultRecords

The call returns an array of user report writer results. The results are the details of when
reports have been run, and the status of each report run. Did the report complete? Did the
report not start? The call requires no details. The call uses the default information from the
logged-in and authenticated user.

Request

Requires no details.
{
// no request details are needed

}

Response

[
{
{
“RequestingUser”: 0,
“urtTicketId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“descriptorId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“resultStatus”: {

“Options”: [
“NotStarted”,
“NotComplete”,
“ErrorComplete”,
“SuccessComplete”,
“Cancelled”

]
},
“reportExecutionStartTime”: “0001-01-01T05:00:00Z”,
“reportExecutionCompleteTime”: “0001-01-01T05:00:00Z”,
“reportDescriptiveHeader”: “”,

},
}

]

Where:

String Value

RequestingUser Integer. ID of the logged-in user requesting the report.

urtTicketId string. An alphanumeric string containing the unique report ID of the report.

descriptorId string. A GUID (globally-unique identifier) that describes the report separately
 from the report ticket.

resultStatus string. The status of each run of the reports. One of:
 0 NotStarted
 1 NotComplete
 2 ErrorComplete
 3 SuccessComplete
 4 Cancelled

Table continued on page 144
143

GetUserReportWriterResultRecords

Table continued from page 143

reportExecutionStartTime long integer. The time that the report writer began execution, in ISO 8601 format
 and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

reportExecution- long integer. The time that the report writer completed the report, in ISO 8601
CompleteTime format and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

reportDescriptiveHeader string. A string describing the report.

See Also

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GenerateTreasuryActivityReport, GetUserReportTickets, ScheduleTradeActivityReport,
ScheduleTreasuryActivityReport, ScheduleTreasuryActivityReport.

144

ScheduleTradeActivityReport

Schedules a series of trade activity reports to run for a list of accounts on a single Order
Management System, starting at a specific date/time, and covering a specific time duration.
The reports will run periodically until canceled.

Trade Activity Reports are delivered in comma-separated-value (CSV) format. For specific CSV
formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request

{
“accountIdList”: [
0

],
“omsId”: 0,
“beginTime”: “0001-01-01T05:00:00Z”,
“intervalDuration”: 0,
“frequency”: {

“Options”: [
 “Hourly”,

 “Daily”,

 “Weekly”,

 “Monthly”,

 “Annual”

]

}
},

Where:

String

Value

AccountIdList integer array. Comma-separated integers; each element an account ID on the

 Order Management System whose trade activity will be reported on. All accounts

 must be from the same OMS and be associated with the logged-in user.

OMSId integer. The Order Management System on which the accounts named in the list

 reside.

beginTime string. The time from which the trade activities will be reported, in ISO 8601

 format and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

intervalDuration integer. The length of time prior to the run time that the report covers, in

 Microsoft ticks format. For example, 90 days. Whenever the report runs, it looks

 back 90 days.

frequency string. How often the report will run. One of:

 0 OnDemand

 1 Hourly

 2 Daily

 3 Weekly

 4 Monthly

 5 Annually

145

ScheduleTradeActivityReport

Response

The response returns an object confirming the settings in the call.
{
“RequestingUser”: 0,
“OMSId”: 0,
“reportFlavor”: {

“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

]
},
“createTime”: “0001-01-01T05:00:00Z”,
“initialRunTime”: “0001-01-01T05:00:00Z”,
“intervalStartTime”: “0001-01-01T05:00:00Z”,
“intervalEndTime”: “0001-01-01T05:00:00Z”,
“RequestStatus”: {

“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

]
},
“ReportFrequency”: {

“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

]
},
“intervalDuration”: 0,
“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“accountIds”: [
0

],
}

Where:

String

Value

RequestingUser integer. The User ID of the person requesting the trade activity report. This

 confirms the ID of the authenticated user who made the request by returning it as

 part of the response.

OMSId integer. The ID of the Order Management System on which the trade activity

 report will be run.

reportFlavor string. The type of report to be generated. One of:

 TradeActivity

 Transaction

 Treasury

 The reportFlavor string confirms the nature of the call.

146 Table continued on page 147

 ScheduleTradeActivityReport

Table continued from page 146
 createTime string. The time and date on which the request for the trade activity report was
 made, in ISO 8601 format and UTC time zone. See “Time– and Date-Stamp
 Formats” on page 8.

 initialRunTime string. The time and date at which the trade activity report was first run, in ISO
 8601 format and UTC time zone. See “Time– and Date-Stamp Formats” on page
 8.

 intervalStartTime string. The start of the period that the report will cover, in ISO 8601 format and
 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 intervalEndTime string. The end of the period that the report will cover, in ISO 8601 format and
 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 requestStatus string. The status of the request for the trade activity report. See “Request
 Status” on page 10. Each request returns one of:
 Submitted
 Validating
 Scheduled
 InProgress
 Completed
 Aborting
 Aborted
 UserCancelled
 SysRetired
 UserCancelledPending

 ReportFrequency string. When the report runs.
 OnDemand
 Hourly
 Daily
 Weekly
 Monthly
 Annually

 intervalDuration long integer. The period that the report covers relative to the run date. The call
 specifies a start time and an intervalDuration in the form of Microsoft ticks. (See
 “Time– and Date-Stamp Formats” on page 8.) For example, say that you
 schedule a weekly report with a 90-day intervalDuration value. intervalDuration
 represents the backward-looking period of the report. When the report runs again
 in a week’s time, it again looks back 90 days — but now those 90 days are offset
 by a week from the first report.

 RequestId string. The ID of the original request. Request IDs are long strings unique within
 the Order Management Systsem.

 lastInstanceId string. For scheduled reports, the report ID of the most recent previously run
 report.

 accountIds integer array. A comma-delimited array of account IDs whose trades are
 reported in the trade activity report.

See Also

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GenerateTreasuryActivityReport, GetUserReportTickets, GetUserReportWriterResultRecords,
ScheduleTreasuryActivityReport, ScheduleTreasuryActivityReport.

147

148

ScheduleTransactionActivityReport

Schedules a series of transaction activity reports for a list of accounts on a single Order
Management System, starting at a specific date/time, and covering a specific time interval (90
days, for example). The reports will run periodically until canceled.

Transaction Activity Reports are delivered in comma-separated-value (CSV) format. For
specific CSV formatting information, see the APEX Extract CSV Data Dictionary, available
from Coinext.

Request

{
“accountIdList”: [
0

],
“omsId”: 0,
“beginTime”: “0001-01-01T05:00:00Z”,
“intervalDuration”: 0,
“frequency”: {

“Options”: [
 “Hourly”,

 “Daily”,

 “Weekly”,

 “Monthly”,

 “Annual”

]

}
},

Where:

String

Value

AccountIdList integer array. Comma-separated integers; each element is an account ID whose

 transaction activity will be reported on. All accounts must be from the same OMS.

OMSId integer. The Order Management System on which the accounts named in the list

 reside.

beginTime string. The time from which the transaction activities will be reported, in ISO

 8601 format and UTC time zone. See “Time– and Date-Stamp Formats” on page

 8.

intervalDuration integer. The length of time prior to the run time that the report covers, in

 Microsoft ticks format. For example, 90 days. Whenever the report runs, it looks

 back 90 days.

frequency string. How often the report will run. One of:

 0 OnDemand

 1 Hourly

 2 Daily

 3 Weekly

 4 Monthly

 5 Annually

149

ScheduleTransactionActivityReport

Response

Similar objects are returned for Generate~Report and Schedule~Report calls.
{
“RequestingUser”: 0,
“OMSId”: 0,
“reportFlavor”: {

“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

]
},
“createTime”: “0001-01-01T05:00:00Z”,
“initialRunTime”: “0001-01-01T05:00:00Z”,
“intervalStartTime”: “0001-01-01T05:00:00Z”,
“intervalEndTime”: “0001-01-01T05:00:00Z”,
“RequestStatus”: {

“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

]
},
“ReportFrequency”: {

“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

]
},
“intervalDuration”: 0,
“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“accountIds”: [
0

],
}

Where:

String

Value

RequestingUser integer. The User ID of the person requesting the transaction activity report. This

 confirms the ID of the authenticated user who made the request by returning it as

 part of the response.

OMSId integer. The ID of the Order Management System on which the transaction

 activity report will be run.

reportFlavor string. The type of report to be generated. One of:

 TradeActivity

 Transaction

 Treasury

 The reportFlavor string confirms the nature of the call.

Table continued on page 151
150

 ScheduleTransactionActivityReport

Table continued from page 150
 createTime string. The time and date on which the request for the transaction activity report
 was made, in ISO 8601 format and UTC time zone. See “Time– and Date-Stamp
 Formats” on page 8.

 initialRunTime string. The time and date at which the transaction activity report was first run, in
 ISO 8601 format and UTC time zone. See ““Time– and Date-Stamp Formats” on
 page 8.

 intervalStartTime string. The start of the period that the report will cover, in ISO 8601 format and
 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 intervalEndTime string. The end of the period that the report will cover, in ISO 8601 format and
 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 requestStatus string. The status of the request for the transaction activity report. See “Request
 Status” on page 10. Each request returns one of:
 Submitted
 Validating
 Scheduled
 InProgress
 Completed
 Aborting
 Aborted
 UserCancelled
 SysRetired
 UserCancelledPending

 ReportFrequency string. When the report runs.
 OnDemand
 Hourly
 Daily
 Weekly
 Monthly
 Annually

 intervalDuration long integer. The period that the report covers relative to the run date. The call
 specifies a start time and an intervalDuration in the form of Microsoft ticks. (See
 “Time– and Date-Stamp Formats” on page 8.) For example, say that you
 schedule a weekly report with a 90-day intervalDuration value. intervalDuration
 represents the backward-looking period of the report. When the report runs again
 in a week’s time, it again looks back 90 days — but now those 90 days are offset
 by a week from the first report.

 RequestId string. The ID of the original request. Request IDs are long strings unique within
 the Order Management System.

 lastInstanceId string. For scheduled reports, the report ID of the most recent previously run
 report.

 accountIds integer array. A comma-delimited array of account IDs whose trades are reported
 in the trade activity report.

See Also

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GenerateTreasuryActivityReport, GetUserReportTickets, GetUserReportWriterResultRecords,
ScheduleTradeActivityReport, ScheduleTreasuryActivityReport.

151

152

ScheduleTreasuryActivityReport

Schedules a series of treasury activity reports for a list of accounts on a single Order Management
System, starting at a specific date/time, and covering a specific time interval. The reports will run
periodically until canceled.

The Treasury Activity Report itself is delivered as a comma-separated-value (CSV) file. For
specific CSV formatting information, see the APEX Extract CSV Data Dictionary, available from
Coinext.

Request

{
“accountIdList”: [
0

],
“omsId”: 0,
“beginTime”: “0001-01-01T05:00:00Z”,
“intervalDuration”: 0,
“frequency”: {

“Options”: [
 “Hourly”,

 “Daily”,

 “Weekly”,

 “Monthly”,

 “Annual”

]

}
},

Where:

String

Value

AccountIdList integer array. Comma-separated integers; each element is an account ID whose

 treasury activity will be reported on. All accounts must be from the same OMS.

OMSId integer. The Order Management System on which the accounts named in the list

 reside.

beginTime string. The time from which the treasury activities will be reported, in ISO 8601

 format and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

intervalDuration integer. The length of time prior to the run time that the report covers, in

 Microsoft ticks format. For example, 90 days. Whenever the report runs, it looks

 back 90 days.

frequency string. How often the report will run. One of:

 0 OnDemand

 1 Hourly

 2 Daily

 3 Weekly

 4 Monthly

 5 Annually

153

ScheduleTreasuryActivityReport

Response

Similar objects are returned for Generate~Report and Schedule~Report calls.
{
“RequestingUser”: 0,
“OMSId”: 0,
“reportFlavor”: {

“Options”: [
“TradeActivity”,
“Transaction”,
“Treasury”

]
},
“createTime”: “0001-01-01T05:00:00Z”,
“initialRunTime”: “0001-01-01T05:00:00Z”,
“intervalStartTime”: “0001-01-01T05:00:00Z”,
“intervalEndTime”: “0001-01-01T05:00:00Z”,
“RequestStatus”: {

“Options”: [
“Submitted”,
“Validating”,
“Scheduled”,
“InProgress”,
“Completed”,
“Aborting”,
“Aborted”,
“UserCancelled”,
“SysRetired”,
“UserCancelledPending”

]
},
“ReportFrequency”: {

“Options”: [
“onDemand”,
“Hourly”,
“Daily”,
“Weekly”,
“Monthly”,
“Annually”

]
},
“intervalDuration”: 0,
“RequestId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“lastInstanceId”: “AAAAAAAAAAAAAAAAAAAAAA==”,
“accountIds”: [
0

],
}

Where:

String

Value

RequestingUser integer. The User ID of the person requesting the treasury activity report. This

 confirms the ID of the authenticated user who made the request by returning it as

 part of the response.

OMSId integer. The ID of the Order Management System on which the treasury activity

 report will be run.

reportFlavor string. The type of report to be generated. One of:

 TradeActivity

 Transaction

 Treasury

 The reportFlavor string confirms the nature of the call.

Table continued on page 155
154

 ScheduleTreasuryActivityReport

Table continued from page 154
 createTime string. The time and date on which the request for the treasury activity report
 was made, in ISO 8601 format and UTC time zone. See “Time– and Date-Stamp
 Formats” on page 8.

 initialRunTime string. The time and date at which the treasury activity report was first run, in
 ISO 8601 format and UTC time zone. See ““Time– and Date-Stamp Formats” on
 page 8.

 intervalStartTime string. The start of the period that the report will cover, in ISO 8601 format and
 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 intervalEndTime string. The end of the period that the report will cover, in ISO 8601 format and
 UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

 requestStatus string. The status of the request for the treasury activity report. See “Request
 Status” on page 10. Each request returns one of:
 Submitted
 Validating
 Scheduled
 InProgress
 Completed
 Aborting
 Aborted
 UserCancelled
 SysRetired
 UserCancelledPending

 ReportFrequency string. When the report runs.
 OnDemand
 Hourly
 Daily
 Weekly
 Monthly
 Annually

 intervalDuration long integer. The period that the report covers relative to the run date. The call
 specifies a start time and an intervalDuration in the form of Microsoft ticks. (See
 “Time– and Date-Stamp Formats” on page 8.) For example, say that you
 schedule a weekly report with a 90-day intervalDuration value. intervalDuration
 represents the backward-looking period of the report. When the report runs again
 in a week’s time, it again looks back 90 days — but now those 90 days are offset
 by a week from the first report.

 RequestId string. The ID of the original request. Request IDs are long strings unique within
 the Order Management System.

 lastInstanceId string. For scheduled reports, the report ID of the most recent previously run
 report.

 accountIds integer array. A comma-delimited array of account IDs whose trades are reported
 in the trade activity report.

See Also

GenerateTradeActivityReport, GenerateTransactionActivityReport,
GenerateTreasuryActivityReport, GetUserReportTickets, GetUserReportWriterResultRecords,
ScheduleTradeActivityReport, ScheduleTransactionActivityReport.

155

156

Tickers and Feeds

GetL2Snapshot
No authentication required — trading venue operator may control access

Provides a current Level 2 snapshot of a specific instrument trading on an Order
Management System to a user-determined market depth. For more information on Level 1
and Level 2 information, see “Level 1 and Level 2 Market Information” on page 3.

The Level 2 snapshot allows the user to specify the level of market depth information on
either side of the bid and ask.

Note: Depth in this call is “depth of market,” the number of buyers and sellers at greater or lesser prices in

the order book for the instrument.

Request

{
 “OMSId”: 1,

 “InstrumentId”: 1,

 “Depth”: 100

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System where the instrument is

 traded.

InstrumentId integer. The ID of the instrument that is the subject of the snapshot.

Depth integer. Depth of the market — the number of buyers and sellers at greater or

 lesser prices in the order book for the instrument. Defaults to 100.

Response

The response is a single object for one specific instrument. The Level2UpdateEvent contains the same
data, but is sent by the OMS when trades occur. A user must subscribe to Level2UpdateEvents.

{
“MDUpdateID”: 0,
“Accounts”: 0,
“ActionDateTime”: 635872032000000000,
“ActionType”: {
“Options”: [
“New”,
“Update”,
“Delete”

]
“LastTradePrice”: 0,
“Orders”: 0,
“Price”: 0,
“ProductPairCode”: 0,
“Quantity”: 0,
“Side”: 0,

}

159

GetL2Snapshot

Where:

String

Value

MDUpdateID integer. Market Data Update ID. This sequential ID identifies the order in which

 the update was created.

Accounts integer. The number of accounts that have orders at this price level.

ActionDateTime string. ActionDateTime identifies the time and date that the snapshot was taken

 or the event occurred, in POSIX format X 1000 (milliseconds since 1 January

 1970). See “Time– and Date-Stamp Formats” on page 8.

ActionType string. L2 information provides price data. This value shows whether this data is

 new, an update, or a deletion. One of:

 New

 Update

 Delete

LastTradePrice real. The price at which the instrument was last traded.

Orders integer. The number of orders at this price point. Whether it is a Buy or Sell order

 is shown by Side, below.

Price real. Bid or Ask price for the Quantity (see Quantity below).

ProductPairCode integer. ProductPairCode is the same number and used for the same purpose

 as InstrumentID. The two are completely equivalent in value. InstrumentId 47 =

 ProductPairCode 47.

Quantity real. Quantity available at a given Bid or Ask price (see Price above).

Side integer. One of:

 0 Buy

 1 Sell

 2 Short (reserved for future use)

 3 Unknown (error condition)

See Also

SubscribeLevel1, SubscribeLevel2, UnsubscribeLevel1, UnsubscribeLevel2

160

GetTickerHistory
No authentication required

Requests a ticker history (high, low, open, close, volume, bid, ask, ID) of a specific instrument
from a given date forward to the present. You will need to format the returned data per your
requirements.

Request

 {

 “InstrumentId”: 1,

 “FromDate”: // POSIX-format date and time

 }

Where:

String

Value

InstrumentId long integer. The ID of a specific instrument. The Order Management System

 and the default Account ID of the logged-in user are assumed.

FromDate long integer. Oldest date from which the ticker history will start, in POSIX format

 and UTC time zone. The report moves toward the present from this point. See

 ““Time– and Date-Stamp Formats” on page 8.

Response

The response returns an array of arrays dating from the FromDate value of the request. The
data are returned oldest-date first. The data returned in the arrays are not labeled. For example,
a single returned array element might look like this:

[
1501604532000,
2792.73,
2667.95,
2687.01,
2700.81,
242.61340767,
0,
2871,
0

]

…and with comments applied to identify the data being returned (comments are not part
of the response):

[
1501604532000, // UTC Date/Time in milliseconds since 1/1/1970
2792.73, // High
2667.95, // Low
2687.01, // Open
2700.81, // Close
242.61340767,// Volume
0, // Inside bid price
2871, // Inside ask price
0 // Instrument ID

]

161

GetTickerHistory

See Also

SubscribeTicker, UnsubscribeTicker

162

GetTradesHistory

Retrieves a list of trades for the specified account, order ID, user, instrument, or starting and
ending time stamp. The returned list begins at start index i, where i is an integer identifying a
specific trade in reverse order; that is, the most recent trade has an index of 0. “Depth” is the count
of trades to report backwards from StartIndex.

Caution: You must coordinate StartIndex, Depth, StartTimeStamp, and EndTimeStamp to retrieve the
historical information you need. As the diagram shows, it is possible to specify values (for example,
EndTimeStamp and Depth) that can exclude information you may want (the red areas).

The owner of the trading venue determines how long to retain order history before archiving.

Note: In this call, “Depth” refers not to the depth of the order book, but to the count of trades to report.

Request

All values in the call other than OMSId are optional.
{

 “OMSId”: 0,

 “AccountId”: 0,

 “InstrumentId”: 0,

 “TradeId”: 0,

 “OrderId”: 0,

 “UserId”: 0,

 “StartTimestamp”: 0,

 “EndTimestamp”: 0,

 “Depth”: 0,

 “StartIndex”: 0,

 “ExecutionId”: 0,

 }

Where:

String

Value

OMSId Integer. The ID of the Order Management System on which the trades took

 place. If no other values are specified, returns the trades associated with the

 default account for the logged-in user on this Order Management System.

Table continued on page 164

163

GetTradesHistory

Table continued from 163
AccountId Integer. The account ID that made the trades. The logged-in user must be

 associated with this account, although other users also can be associated with
 the account. If no account ID is supplied, the system assumes the default account
 for the logged-in user.

InstrumentId long integer. The ID of the instrument whose history is reported. If no instrument
 ID is included, the system returns trades for all instruments associated with the
 account and OMS.

TradeId integer. The ID of a specific trade. If specified, the call can return multiple states
 for a single trade.

OrderId integer. The ID of the order resulting in the trade. If specified, the call returns all
 trades associated with the order.

UserId integer. The ID of the logged-in user. If not specified, the call returns trades
 associated with the users belonging to the default account for the logged-in user
 of this OMS.

StartTimeStamp long integer. The historical date and time at which to begin the trade report, in
 POSIX format and UTC time zone. If not specified, reverts to the start date of this
 account on the trading venue. See “Time– and Date-Stamp Formats” on page
 8.

EndTimeStamp long integer. Date at which to end the trade report, in POSIX format and UTC
 time zone. If not specified, uses the current time. See ““Time– and Date-Stamp
 Formats” on page 8.

Depth integer. In this case, the count of trades to return, counting from the StartIndex.
 If not specified, returns all trades between BeginTimeStamp and EndTimeStamp,
 beginning at StartIndex.

StartIndex integer. The starting index into the history of trades, from 0 (the most recent
 trade) and moving backwards in time. If not specified, defaults to 0.

ExecutionId integer. The ID of the individual buy or sell execution. If not specified, returns all.

Response

The response returns an array, one element for each trade.
[
{
{
“TradeTimeMS”: 0,
“Fee”: 0,
“FeeProductId”: 0,
“OrderOriginator”: 0,
“OMSId”: 0,
“ExecutionId”: 0,
“TradeId”: 0,
“OrderId”: 0,
“AccountId”: 0,
“SubAccountId”: 0,
“ClientOrderId”: 0,
“InstrumentId”: 0,
“Side”: {

“Options”: [
“Buy”,
“Sell”,
“Short”,
“Unknown”

]

164 Code continued on page 165

Code continued from 164

GetTradesHistory

},
“Quantity”: 0,
“RemainingQuantity”: 0,
“Price”: 0,
“Value”: 0,
“TradeTime”: 0,
“CounterParty”: “”,
“OrderTradeRevision”: 0,
“Direction”: {

“Options”: [
“NoChange”,
“UpTick”,
“DownTick”

]
},
“IsBlockTrade”: false,

},
]

Where:

String

Value

TradeTimeMS long integer. The time at which the trade took place, reported in Microsoft ticks

 format and UTC time zone. See “Time– and Date-Stamp Formats” on page 8.

Fee real. The fee that applied to this trade, if any.

FeeProductId integer. The ID of the product in which the fee is denominated.

OrderOriginator integer. The ID of the user who entered the order on your side of the trade.

OMSId integer. The ID of the Order Management System on which the trade took place.

ExecutionId integer. The ID of your sell or buy side portion of the execution, individually.

TradeId integer. The ID of the overall trade.

OrderId integer. The ID of the order that resulted in the trade.

AccountId integer. The ID of the account under which the trade was executed.

SubAccountId integer. Not currently used.

ClientOrderId long integer. A user-assigned ID for the order (like a purchase-order number

 assigned by a company). ClientOrderId defaults to 0.

InstrumentId long integer. The ID of the instrument being traded.

Side string. One of:

 0 Buy

 1 Sell

 2 Short (reserved for future use)

 3 Unknown (error condition)

Quantity real. The quantity of the instrument being traded.

RemainingQuantity real. Any quantity remaining in the order after this trade.

Table continued on page 166

165

GetTradesHistory

Table continued from 165

Price real. The unit price of the order.

Value real. The overall value of the trade — price X quantity.

TradeTime long integer. Time at which the trade took place, in POSIX format and UTC time
 zone.

CounterParty long integer. Shows 0.

OrderTradeRevision integer. The ID of any trade revision that took place for the trade.

Direction string. Effect of this trade on the market. One of:
 Nochange
 UpTick
 DownTick

IsBlockTrade Boolean. Returns true if the trade was a reported trade; false otherwise.

See Also

GenerateTradeActivityReport, GetAccountTrades, ScheduleTradeActivityReport,
SubscribeTrades, UnsubscribeTrades

166

SubscribeAccountEvents

Subscribes the user to notifications about the status of account-level events: orders, trades, position
updates, deposits, and withdrawals for a specific account on the Order Management System (OMS).
The subscription reports all events associated with a given account; there is no filter at the call level
to subscribe to some events and not others.

Account event information is supplied in comma-separated-value (CSV) format. For specific CSV
formatting information, see the APEX Extract CSV Data Dictionary, available from Coinext.

Request

{
“AccountId”: 1,
“OMSId”: 1

}

Where:

String

Value

AccountId integer. The ID of the account for the logged-in user.

OMSId integer. The ID of the Order Management System to which the account belongs.

Response

{
“Subscribe”: true
}

Where:

String

Value

Subscribe Boolean. A successful subscription returns true; otherwise, false.

See The Events on page 168

167

SubscribeAccountEvents

The Events

When you call SubscribeAccountEvents, you subscribe to the following list of events. The
Order Management System may supply them at irregular intervals; software must listen for these
events. The system sends each of these events in a message frame. See ““Message Frame” on
page 1.

AccountPositionEvent

Trigger: The balance in your account changes.

{
“OMSId”:4, //The OMSId. [Integer]
“AccountId”:4, // account id number. [Integer]
“ProductSymbol”:”BTC”,
//The Product Symbol for this balance message.

[String] “ProductId”:1,
//The Product Id for this balance message. [Integer]

“Amount”:10499.1,
//The total balance in the account for the specified product.

[Dec] “Hold”: 2.1,
//The total amount of the balance that is on hold. Your available
//balance for trading and withdraw is (Amount - Hold). [Decimal]

“PendingDeposits”:0,
//Total Deposits Pending for the specified product.

[Decimal] “PendingWithdraws”:0,
//Total Withdrawals Pending for the specified product.

[Decimal] “TotalDayDeposits”:0,
//The total 24-hour deposits for the specified product. UTC.

[Dec] “TotalDayWithdraws”:0
//The total 24-hour withdraws for the specified product. UTC [Dec]

}

CancelAllOrdersRejectEvent

Trigger: All orders for your account are rejected.

{
“OMSId”: 1, // OMS ID [Integer]
“AccountId”: 4, // ID of the account being tracked [Integer]
“InstrumentId”: 0,
// ID of the instrument in the order [Long Integer]

“Status”: “Rejected”, // Accepted/Rejected [String]
“RejectReason”: “Instrument not found.”
// Reason for rejection [String]

}

CancelOrderRejectEvent

Trigger: Your order is canceled.

{
“OMSId”: 1, //OMS Id [Integer] Always 1
“AccountId”: 4, //Your Account ID. [Integer]
“OrderId”: 1,
//The Order ID from your Cancel request. [64 Bit Integer]

“OrderRevision”: 0,
//The Revision of the Order, if any was found. [64 Bit

Integer] “OrderType”: “Unknown”, // See “Order Types” on page 7
“InstrumentId”: 1,

// The InstrumentId from your Cancel request. [Integer]
“Status”: “Rejected”, //Always “Rejected” [String]
“RejectReason”: “Order Not Found”
//A message describing the reason for the rejection. [String]

}

168

SubscribeAccountEvents

CancelReplaceOrderRejectEvent

Trigger: Your order is rejected even if a cancel-replace order was placed.
{
“OMSId”: 1, // ID of the OMS [integer]
“AccountId”: 4, // ID of the account [integer]
“OrderId”: 9342, // The ID of the rejected order [integer]
“ClientOrderId”: 1234, // The client-supplied order ID [long integer]
“LimitPrice”: 99.1, // The limit price of the order.
“OrderIdOCO”: 0,
// The ID of the other ordre to cancel if this is executed.

“OrderType”: “Limit”, // See “Order Types” on page 7.
“PegPriceType”: “Bid”, // Where to peg the stop/trailing
order. “OrderIdToReplace”: 9333,
// The ID of the order being cancelled and replaced.

“InstrumentId”: 1, // ID of the instrument traded in the
order. “ReferencePrice”: 99.1, // used internally.
“Quantity”: 1.0, // Quantity of the replacement order
“Side”: “Buy”, // Side of the order: Buy, Sell, Short (future)
“StopPrice”:0, // The price at which to execute the new order.
“TimeInForce”:”GTC”, // Period when new order can be executed.
“Status”:”Rejected”, // Status of the order – always “rejected”
“RejectReason”:”Order Not Found” // Reason the order was rejected.

}

MarketStateUpdate

Trigger: The market state is altered administratively.
{
“ExchangeId”:1, // Exchange Id [Integer]
“VenueAdapterId”:1, // Internal [Integer]
“VenueInstrumentId”:1, // Instrument Id on a specific venue
[Integer] “Action”:”ReOpen”,
// Market State Action [String] Values are
// “Pause”, “Resume”, “Halt”,

“ReOpen” “PreviousStatus”:”Stopped”,
// Previous Market Status for Instrument [String] Values are
// “Running”, “Paused”, “Stopped”,

“Starting” “NewStatus”:”Running”,
// Market Status for Instrument [String] Values are
// “Running”, “Paused”, “Stopped”, “Starting”

“ExchangeDateTime”:”2016-04-21T21:48:22Z”
// ISO 8601 format UTC time zone

}

NewOrderRejectEvent

Trigger: An order associated with your account is rejected.
{
“OMSId”: 1, //OMS Id [Integer] Always 1
“AccountId”: 4, //Your Account Id [Integer]
“ClientOrderId”: 1234, //Your Client Order Id [64 Bit Integer]
“Status”: “Rejected”, //Always “Rejected”
“RejectReason”: “No More Market”
//A message describing the reason for the reject.

}

OrderStateEvent

Trigger: The status changes for an order associated with your account.

Code continued on page 170

{
“Side”:”Sell”,
// The side of your order. [String] Values are “Sell”,
// “Buy”, “Short”

“OrderId”: 9849, //The Server-Assigned Order Id. [64-bit Integer]
“Price”: 97, //The Price of your order. [Decimal]

169

SubscribeAccountEvents

Code continued from page 169
“Quantity”:1,
// The Quantity (Remaining if partially or fully executed) of
// your order. [Decimal]

“Instrument”:1, // The InstrumentId your order is for.
[Integer] “Account”:4, // Your AccountId [Integer]
“OrderType”:”Limit”,
// The type of order. [String] Values are “Market”, “Limit”,
// “StopMarket”, “StopLimit”, “TrailingStopMarket”, and
// “TrailingStopLimit”

“ClientOrderId”:0, // Your client order id. [64-bit Integer]
“OrderState”:”Working”, // The current state of the order. [String]
// Values are “Working”, “Rejected”, “FullyExecuted”, “Canceled”,
// “Expired”

“ReceiveTime”:0, // Timestamp in POSIX format
“OrigQuantity”:1, // The original quantity of your order. [Decimal]
“QuantityExecuted”:0, // The total executed quantity. [Decimal]
“AvgPrice”:0, // Avergage executed price. [Decimal]
“ChangeReason”:”NewInputAccepted”
// The reason for the order state change. [String] Values are
// “NewInputAccepted”, “NewInputRejected”, “OtherRejected”,
// “Expired”, “Trade”, SystemCanceled BelowMinimum”,
// “SystemCanceled NoMoreMarket”, “UserModified”

OrderTradeEvent

Trigger: An order associated with your account results in a trade.

{
“OMSId”:1, //OMS Id [Integer]
“TradeId”:213, /Trade Id [64-bit Integer]
“OrderId”:9848, //Order Id [64-bit Integer]
“AccountId”:4, //Your Account Id [Integer]
“ClientOrderId”:0, //Your client order id. [64-bit Integer]
“InstrumentId”:1, //Instrument Id [Integer]
“Side”:”Buy”,
//[String] Values are “Buy”, “Sell”, “Short” (future)

“Quantity”:0.01, //Quantity [Decimal]
“Price”:95, //Price [Decimal]
“Value”:0.95, //Value [Decimal]
“TradeTime”:635978008210426109,
// TimeStamp in Microsoft ticks

format “ContraAcctId”:3,
// The Counterparty of the trade. The counterparty is always
// the clearing account. [Integer]

“OrderTradeRevision”:1, //Usually 1
“Direction”:”NoChange” //”Uptick”, “Downtick”, “NoChange”

}

PendingDepositUpdate

Trigger: Deposit pending on your account.

{
“AccountId”: 4, // Your account id number. [Integer]
“AssetId”: 1, // The ProductId of the pending deposit. [Integer]
“TotalPendingDepositValue”: 0.01
//The value of the pending deposit. [Decimal]

}
“Requires2FA”: false,
“TwoFAType”: “”,
“TwoFAToken”: “”,

}

See Also

SubscribeLevel1, SubscribeLevel2, SubscribeTicker, SubscribeTrades,
UnsubscribeLevel1, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

170

SubscribeLevel1
No authentication required — trading venue operator may control access

Retrieves the latest Level 1 Ticker information and then subscribes the user to ongoing Level 1
market data event updates for one specific instrument. For more information about Level 1 and
Level 2, see “Level 1 and Level 2 Market Information” on page 3. The SubscribeLevel1 call
responds with the Level 1 response shown below. The OMS then periodically sends
Leve1UpdateEvent information when best bid/best offer issues in the same format as this response,
until you send the UnsubscribeLevel1 call.

Request

You can identify the instrument with its ID or with its market symbol (string).
{

1,

“OMSId”:

“InstrumentId”: 0

}

Or

{
1,

“OMSId”:

“Symbol”: “BTCUSD”}

Where:

String Value

OMSId integer. The ID of the Order Management System on which the instrument

 trades.

InstrumentId integer. The ID of the instrument you’re tracking. Conditionally optional.

Symbol string. The symbol of the instrument you’re tracking. Conditionally optional.

Response

Code continued on page 172

The SubscribeLevel1 response and Level1UpdateEvent both provide the same information.

{
“OMSId”: 1,
“InstrumentId”: 1,
“BestBid”: 0.00,
“BestOffer”: 0.00,
“LastTradedPx”: 0.00,
“LastTradedQty”: 0.00,
“LastTradeTime”: 635872032000000000,
“SessionOpen”: 0.00,
“SessionHigh”: 0.00,
“SessionLow”: 0.00,
“SessionClose”: 0.00,
“Volume”: 0.00,
“CurrentDayVolume”: 0.00,
“CurrentDayNumTrades”: 0,
“CurrentDayPxChange”: 0.0,
“Rolling24HrVolume”: 0.0,
“Rolling24NumTrades”: 0.0,
“Rolling24HrPxChange”: 0.0,

171

SubscribeLevel1

Code continued from page 171
“TimeStamp”: 635872032000000000,

}

 Where:

String

Value

 OMSId integer. The ID of the Order Management System on which the instrument

 trades.

 InstrumentId integer. The ID of the instrument being tracked.

 BestBid real. The current best bid for the instrument.

 BestOffer real. The current best offer for the instrument.

 LastTradedPx real. The last-traded price for the instrument.

 LastTradedQty real. The last-traded quantity for the instrument.

 LastTradeTime long integer. The time of the last trade in POSIX format X 1000 (milliseconds

 since 1 January 1970). See “Time– and Date-Stamp Formats” on page 8.

 SessionOpen real. Opening price. In markets with openings and closings, this is the opening

 price for the current session; in 24-hour markets, it is the price as of UTC

 Midnight.

 SessionHigh real. Highest price during the trading day, either during a true session (with

 opening and closing prices) or UTC midnight to UTC midnight.

 SessionLow real. Lowest price during the trading day, either during a true session (with

 opening and closing prices) or UTC midnight to UTC midnight.

 SessionClose real. The closing price. In markets with openings and closings, this is the closing

 price for the current session; in 24-hour markets, it is the price as of UTC

 Midnight.

 Volume real. The unit volume of the instrument traded, either during a true session (with

 openings and closings) or in 24-hour markets, the period from UTC Midnight to

 UTC Midnight.

 CurrentDayVolume real. The unit volume of the instrument traded either during a true session (with

 openings and closings) or in 24-hour markets, the period from UTC Midnight to

 UTC Midnight.

 CurrentDayNumTrades integer. The number of trades during the current day, either during a true session

 (with openings and closings) or in 24-hour markets, the period from UTC Midnight

 to UTC Midnight.

 CurrentDayPxChange real. Current day price change, either during a true trading session or UTC

 Midnight to UTC midnight.

 Rolling24HrVolume real. Unit volume of the instrument during the past 24 hours, regardless of time

 zone. Recalculates continuously.

 Rolling24HrNumTrades integer. Number of trades during the past 24 hours, regardless of time zone.

 Recalculates continuously.

 Rolling24HrPxChange real. Price change during the past 24 hours, regardless of time zone.

 Recalculates continuously.

Table continued on page 173

172

 SubscribeLevel1

Table continued from page 172
 TimeStamp long integer. The time this information was provided, in POSIX format X 1000
 (milliseconds since 1 January 1970). See “Time– and Date-Stamp Formats” on
 page 8.

See Also

SubscribeAccountEvents, SubscribeLevel2, SubscribeTicker, SubscribeTrades,
UnsubscribeLevel1, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

173

SubscribeLevel1

174

SubscribeLevel2
No authentication required — trading venue operator may control access

Retrieves the latest Level 2 Ticker information and then subscribes the user to Level 2 market data
event updates for one specific instrument. Level 2 allows the user to specify the level of market depth
information on either side of the bid and ask. For more information about Level 1 and Level 2, see
“Level 1 and Level 2 Market Information” on page 3. The SubscribeLevel2 call responds with the Level
2 response shown below. The OMS then periodically sends Level2UpdateEvent information in the same
format as this response until you send the UnsubscribeLevel2 call.

Note: Depth in this call is “depth of market,” the number of buyers and sellers at greater or lesser prices in

the order book for the instrument.

Request

You can identify the instrument either by ID or by market symbol.
{

1,

“OMSId”:

“InstrumentId”: 0

“Depth”: 10

}

or

{
1,

“OMSId”:

“Symbol”: “BTCUSD”

“Depth”: 10

}

Where:

String Value

OMSId integer. The ID of the Order Management System on which the instrument

 trades.

InstrumentId integer. The ID of the instrument you’re tracking. Conditionally optional.

Symbol string. The symbol of the instrument you’re tracking. Conditionally optional.

Depth integer. The depth of the order book. The example request returns 10 price

 levels on each side of the market.

Response

The response is a single object (for one specific instrument). The Level2UpdateEvent contains the
same data, but is sent by the OMS when trades occur.

{
“MDUpdateID”: 0,
“Accounts”: 0,
“ActionDateTime”: 635872032000000000,

Code continued on page 176

175

SubscribeLevel2

Code continued from page 175
“ActionType”: {

 “Options”: [

 “New”,

 “Update”,

 “Delete”

]

 “LastTradePrice”: 0,

 “Orders”: 0,

 “Price”: 0,

 “ProductPairCode”: 0,

 “Quantity”: 0,

 “Side”: 0,

 }

Where:

String

Value

MDUpdateID integer. Market Data Update ID. This sequential ID identifies the order in which

 the update was created.

Accounts integer. The number of accounts that have orders at this price level.

ActionDateTime string. ActionDateTime identifies the time and date that the snapshot was taken

 or the event occurred, in POSIX format X 1000 (milliseconds since 1 January

 1970). See “Time– and Date-Stamp Formats” on page 8.

ActionType string. L2 information provides price data. This value shows whether this data is

 new, an update, or a deletion. One of:

 New

 Update

 Delete

LastTradePrice real. The price at which the instrument was last traded.

Orders integer. The number of orders at this price point. Whether it is a Buy or Sell order

 is shown by Side, below.

Price real. Bid or Ask price for the Quantity (see Quantity below).

ProductPairCode integer. ProductPairCode is the same number and used for the same purpose

 as InstrumentID. The two are completely equivalent in value. InstrumentId 47 =

 ProductPairCode 47.

Quantity real. Quantity available at a given Bid or Ask price (see Price above).

Side integer. One of:

 0 Buy

 1 Sell

 2 Short (reserved for future use)

 3 Unknown (error condition)

See Also

SubscribeAccountEvents, SubscribeLevel1, SubscribeTicker, SubscribeTrades,
UnsubscribeLevel1, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

176

SubscribeTicker
No authentication required — trading venue operator may control access

Subscribes a user to a Ticker Market Data Feed for a specific instrument and interval.
SubscribeTicker sends a response object as described below, and then periodically returns a
TickerDataUpdateEvent that matches the content of the response object.

Request

{
“OMSId”: 1,
“InstrumentId”: 1,

“Interval”: 60,

“IncludeLastCount”: 100

}

Where:

String

Value

OMSId integer. The ID of the Order Management System

InstrumentId long integer. The ID of the instrument whose information you want to track.

Interval integer. Specifies in seconds how frequently to obtain ticker updates. Default is

 60 — one minute.

IncludeLastCount integer. The limit of records returned in the ticker history. The default is 100.

Response

The response returns an array of objects, each object an unlabeled, comma-delimited set of
numbers. The Open price and Close price are those at the beginning of the tick — the Interval time
subscribed to in the request.

A typical response might look like this:
[[1510719222970.21,6943.51,6890.27,6898.41,6891.16,0,6890.98,6891.98,1,
1510718681956.34]],

Here are the values in order with an explanation:
[
{
“EndDateTime”: 0, // POSIX format
“HighPX”: 0,
“LowPX”: 0,
“OpenPX”: 0,
“ClosePX”: 0,
“Volume”: 0,
“Bid”: 0,
“Ask”: 0,
“InstrumentId”: 1,
“BeginDateTime”: 0 // POSIX format

}
]

177

SubscribeTicker

See Also

SubscribeAccountEvents, SubscribeLevel1, SubscribeLevel2, SubscribeTrades,
UnsubscribeLevel1, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

178

SubscribeTrades

Subscribes an authenticated user to the Trades Market Data Feed for a specific instrument.
Each trade has two sides: Buy and Sell.

SubscribeTrades returns the response documented here for your immediate information,
then periodically sends the OrderTradeEvent documented in SubscribeAccountEvents.

Request

{
“OMSId”: 1,

“InstrumentId”: 1,

“IncludeLastCount”: 100

}

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the instrument is

 traded.

InstrumentId long integer. The ID of the instrument whose trades will be reported.

IncludeLastCount integer. Specifies the number of previous trades to retrieve in the immediate

 snapshot. Default is 100.

Response

The response returns an array of trades. Both sides of each trade are described.
[
{
{
“OMSId”: 0,
“TradeID”: 0,
“ProductPairCode”: 0,
“Quantity”: 0,
“Price”: 0,
“Order1”: 0,
“Order2”: 0,
“TradeTime”: “0001-01-01T05:00:00Z”,
“Direction”: {

“Options”: [
“NoChange”,
“UpTick”,
“DownTick”

]
},

“TakerSide”: 0,
“Side1AccountId”: 0,
“Side2AccountId”: 0,
“Order1Side”: {

“Options”: [
“Buy”,
“Sell”,

Code continued on page 180
179

SubscribeTrades

Code continued from page 179

“Short”,

“Unknown”

]

},

“Order2Side”: {
[

“Options”:

Buy”,

“Sell”,

“Short”,

“Unknown”

]

},

“BlockTrade”: false,

“Order1ClientId”: 0,

“Order2ClientId”: 0,

},

}

]

Where:

String

Value

OMSId integer. The ID of the Order Management System where the instrument to be

 tracked is traded.

TradeID integer. The ID of this trade.

ProductPairCode integer. ProductPairCode is the same number and used for the same purpose

 as InstrumentID. The two are completely equivalent in value. InstrumentId 47 =

 ProductPairCode 47.

Quantity real. The quantity of the instrument traded.

Price real. The price at which the instrument traded.

Order1 integer. The ID of one of the orders that resulted in the trade.

Order2 integer. The ID of the other order that resulted in the trade.

TradeTime long integer. The time at which the trade took place. UTC time. See “Time– and

 Date-Stamp Formats” on page 8.

Direction string. Effect of the trade on the instrument’s market price. One of:

 0 NoChange

 1 UpTick

 2 DownTick

TakerSide integer. Which side of the trade took liquidity? One of:

 0 Buy

 1 Sell

 The maker side of the trade provides liquidity by placing the order on the book

 (this can be a buy or a sell order). The other side takes the liquidity. It, too, can be

 buy-side or sell-side.

Side1AccountId integer. The account ID of the 1-side of the trade.

Side2AccountId integer. The account ID of the 2-side of the trade.

180 Table continued on page 181

SubscribeTrades

Table continued from page 180

Order1Side string. The side taken by order 1 of the trade. One of:
 0 Buy
 1 Sell
 2 Short (reserved for future use)
 3 Unknown (error condition)

Order2Side string. The side taken by order 2 of the trade. One of:
 0 Buy
 1 Sell
 2 Short (reserved for future use)
 3 Unknown (error condition)

BlockTrade Boolean. Was this a privately negotiated trade that was reported to the OMS? A
 private trade returns true; otherwise false. Default is false.

Order1ClientId long integer. The client-supplied order ID of the 1-side client.

Order2ClientId long integer. The client-supplied order ID of the 2-side client.

See Also

SubscribeAccountEvents, SubscribeLevel1, SubscribeLevel2, SubscribeTicker,
UnsubscribeLevel1, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

181

SubscribeTrades

182

UnsubscribeLevel1
No authentication required

Unsubscribes the user from a Level 1 Market Data Feed subscription.

Request

 {

 “OMSId”: 1,

 “InstrumentId”: 1

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the user has

 subscribed to a Level 1 market data feed.

InstrumentId long integer. The ID of the instrument being tracked by the Level 1 market data

 feed.

Response

{
 “result”: true,

 “errormsg”: null,

 “errorcode”:0,

 “detail”: null

 }

Where:

String

Value

result Boolean. A successful receipt of the unsubscribe request returns true; and

 unsuccessful receipt (an error condition) returns false.

errormsg string. A successful receipt of the unsubscribe request returns null; the errormsg

 parameter for an unsuccessful request returns one of the following messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the unsubscribe request returns 0. An

 unsuccessful receipt returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

183

UnsubscribeLevel1

See Also

SubscribeAccountEvents, SubscribeLevel1, SubscribeLevel2, SubscribeTicker,
SubscribeTrades, UnsubscribeLevel2, UnsubscribeTicker, UnsubscribeTrades

184

UnsubscribeLevel2
No authentication required

Unsubscribes the user from a Level 2 Market Data Feed subscription..

Request

 “OMSId”: 1,

 “InstrumentId”: 1

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the user has

 subscribed to a Level 2 market data feed.

InstrumentId long integer. The ID of the instrument being tracked by the Level 2 market data

 feed.

Response

{
 “result”: true,

 “errormsg”: null,

 “errorcode”:0,

 “detail”: null

 }

Where:

String

Value

result Boolean. A successful receipt of the unsubscribe request returns true; and

 unsuccessful receipt (an error condition) returns false.

errormsg string. A successful receipt of the unsubscribe request returns null; the errormsg

 parameter for an unsuccessful request returns one of the following messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the unsubscribe request returns 0. An

 unsuccessful receipt returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

185

UnsubscribeLevel2

See Also

SubscribeAccountEvents, SubscribeLevel1, SubscribeLevel2, SubscribeTicker,
SubscribeTrades, UnsubscribeLevel1, UnsubscribeTicker, UnsubscribeTrades

186

UnsubscribeTicker
No authentication required

Unsubscribes a user from a Ticker Market Data Feed

Request

 [

 “OMSId”: 1,

 “InstrumentId”: 1

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the user has

 subscribed to a ticker market data feed.

InstrumentId long integer. The ID of the instrument being tracked by the ticker market data

 feed.

Response

{
 “result”: true,

 “errormsg”: null,

 “errorcode”:0,

 “detail”: null

 }

Where:

String

Value

result Boolean. A successful receipt of the unsubscribe request returns true; and

 unsuccessful receipt (an error condition) returns false.

errormsg string. A successful receipt of the unsubscribe request returns null; the errormsg

 parameter for an unsuccessful request returns one of the following messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the unsubscribe request returns 0. An

 unsuccessful receipt returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

187

UnsubscribeTicker

See Also

SubscribeAccountEvents, SubscribeLevel1, SubscribeLevel2, SubscribeTicker,
SubscribeTrades, UnsubscribeLevel1, UnsubscribeLevel2, UnsubscribeTrades

188

UnsubscribeTrades
No authentication required

Unsubscribes a user from the Trades Market Data Feed.

Request

 [

 “OMSId”: 1,

 “InstrumentId”: 1

 }

Where:

String

Value

OMSId integer. The ID of the Order Management System on which the user has

 subscribed to a trades market data feed.

InstrumentId long integer. The ID of the instrument being tracked by the trades market data

 feed.

Response

{
 “result”: true,

 “errormsg”: null,

 “errorcode”:0,

 “detail”: null

 }

Where:

String

Value

result Boolean. A successful receipt of the unsubscribe request returns true; and

 unsuccessful receipt (an error condition) returns false.

errormsg string. A successful receipt of the unsubscribe request returns null; the errormsg

 parameter for an unsuccessful request returns one of the following messages:

 Not Authorized (errorcode 20)

 Invalid Request (errorcode 100)

 Operation Failed (errorcode 101)

 Server Error (errorcode 102)

 Resource Not Found (errorcode 104)

errorcode integer. A successful receipt of the unsubscribe request returns 0. An

 unsuccessful receipt returns one of the errorcodes shown in the errormsg list.

detail string. Message text that the system may send. Usually null.

189

UnsubscribeTrades

See Also

SubscribeAccountEvents, SubscribeLevel1, SubscribeLevel2, SubscribeTicker,
SubscribeTrades, UnsubscribeLevel1, UnsubscribeLevel2, UnsubscribeTicker

